Skip to main content
Log in

Evaluation of trace element concentration (acid leachable) in sediments from River Pánuco and its adjacent lagoon areas, NE México

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A set of forty-one surface sediment samples were collected in River Pánuco and its adjoining lagoon areas in NE Mexico to identify the enrichment pattern of trace elements. The samples were analyzed for sediment texture, carbonates, organic carbon and acid leachable trace elements (ALTEs) using autoclave method [Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd, V, Be, Ba, Sr, As]. Geochemical results of Fe, Cr, Ni, Co, V and Sr in zone 1 indicate that erosion in the upland region (Sierra Madre Oriental Mountains) is very high. The above feature is supported by the supremacy of finer sediments (82.12 %), carbonates (44.67 %) and organic carbon (10.74 %), which are brought down from the drainage basin. The overall average concentration of ALTEs Mn (607 μg g−1), Cu (28.29 μg g−1), Ni (16.56 μg g−1), Pb (46.11 μg g−1), Cd (1.81 μg g−1) and Zn (92.18 μg g−1) indicates higher values than the lowest effect level (LEL) and effects range low (ERL) of environmental indicators. The results suggest that they are due to the increase in oil refineries, metal based industries, shipping activities and the effluent input which could enter the biological cycle and might create human health problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acevedo-Figueroa D, Jiménez BD, Rodríduez-Sierra CJ (2006) Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environ Pollut 141:336–342

    Article  Google Scholar 

  • Adamo P, Zampella M, Gianfreda L, Renella G, Rutigliano FA, Terribile F (2006) Impact of river overflowing on trace element contamination of volcanic soils in south Italy: part I. Trace element speciation in relation to soil properties. Environ Pollut 144:308–316

    Article  Google Scholar 

  • Agemian H, Chau ASY (1976) Evaluation of extraction techniques for the determination of metals in aquatic sediments. Analyst 101:761–767

    Article  Google Scholar 

  • Álvarez RU, Rosales HL, Carranza EA (1986) Heavy metals in Blanco river sediments, Veracruz, México. Instituto Ciencias del Mar y Limnología, Universidad Nacional Autónoma del México 13(2):1–10

    Google Scholar 

  • Amaya PG, Villanueva FS, Botello AV (2005) Metales en tres lagunas costeras del estado de Veracruz. In: Botello AV, Rendón-Ostén J, Gold-Bouchot G, Agraz-Hernández C (eds) Golfo de México contaminación e impacto ambiental: Diagnostico y tendencias, 2da edición, Universidad Autónoma de Campeche y Universidad Nacional Autónoma de México, Instituto Nacional Ecología, México, pp 361–372

  • Amezcua-Allieri MA, Salazar-Coria L (2008) Nickel and vanadium concentrations and its relation with sediment acute toxicity. Bull Environ Contam Toxicol 80:555–560

    Article  Google Scholar 

  • Bargagli R, Cateni D, Nelli L, Olmastroni S, Zagarese B (1997) Environmental impact of trace element emissions from geothermal power plants. Arch Environ Contam Toxicol 33:172–181

    Article  Google Scholar 

  • Binstock DA, Grohse PM, Gaskill A Jr, Sellers C, Luk KK, Kingston HM (1991) Development and validation of a method for determining elements in solid waste by microwave digestion. Anal Chem 74(2):360–366

    Google Scholar 

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76:89–131

    Article  Google Scholar 

  • Buckley DE, Smith JN, Winters GV (1995) Accumulation of contaminant metals in marine sediments of Halifax harbour, Novo Scotia: environmental factors and historical trends. Appl Geochem 10:175–195

    Article  Google Scholar 

  • Burau RE (1982) Lead. In: Page AL (ed) Methods of soil analysis (Part 2). Chemical and microbiological properties, 2nd edn. Agron monograph, vol 9. ASA and SSSA Madison, WI, USA, pp 347–366

  • Cabrera-Ramírez MA (2003) Estudió de sedimentos del ambiente de plataforma frente al Río Panuco, Unpublished Tesis de Maestría en Ciencias, Posgrado en Ciencias del Mar y Limnología, UNAM, p 94

  • Cattaneo A, Correggiari A, Langone L, Trincardi F (2003) The late Holocene Gargno sub-aqueous delta, adriatic shelf sediment pathways and supply fluctuations. Mar Geol 193:61–91

    Article  Google Scholar 

  • Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20(1):3–22

    Article  Google Scholar 

  • Chauhan OS, Jayakumar S, Menezes AAA, Rajawat AS, Nayak SR (2006) Anomalous inland influx of the river Indus, Gulf of Kachchh, India. Mar Geol 229:91–100

    Article  Google Scholar 

  • Cheggour M, Chafik A, Fisher NS, Benbrahim S (2005) Metal concentrations in sediments and clams in four Moroccan estuaries. Mar Environ Res 59:119–137

    Article  Google Scholar 

  • Drik D, Link WP, Kingston HM (1998) Development and validation of the new EPA micro-wave assisted leach method 3051A. Environ Sci Tech 32(22):3628–3632

    Article  Google Scholar 

  • Fiechter J, Steffen KL, Moores CNK, Haus BK (2006) Hydrodynamics and sediment transport in a southeast Florida tidal inlet. Estuar Coast Shelf Sci 70:297–306

    Article  Google Scholar 

  • Fish JE (1977) Karst hydrogeology and geomorphology of the Sierra de el Abra and the valles-San Luis Potosi region, México. Unpublished Doctorate Dissertation, McMaster University, Hamilton, Ontario, p 469

  • Flores-Angel RM, Rodríguez-Espinosa PF, Montes de Oca-Valero JA, Mugica-Alvarez V, Ortiz-Romero-Vargas ME, Navarrete Lopez M, Dorantes-Rosales HJ (2007) Metal content in air samples collected in an urban zone in Tampico, Mexico: a first survey. Human Ecol Risk Assess 13:1359–1372

    Article  Google Scholar 

  • Förstner U, Salomons W (1991) Mobilization of metals from sediments. In: Merian A (ed) Metals and their compounds in the environment: Occurrence, analysis and biological relevance. VCH Verlagsgesellschaft MBH, Weinheim, pp 379–398

    Google Scholar 

  • Förstner U, Wittmann G (1979) Metal pollution in aquatic environment. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Foster IDL, Charlesworth SM (1996) Heavy metals in the hydrological cycle: trends and explanation. Hydrol Process 10:227–261

    Article  Google Scholar 

  • Gao S, Luo T-C, Zhang B-R, Zhang H-F, Han Y-W, Zhao Z-D, Hu Y-K (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmo Acta 62(11):1959–1975

    Article  Google Scholar 

  • Garnaga G, Wyse E, Azemard S, Stankevičius A, Mova SD (2006) Arsenic in sediments from the southeastern Baltic sea. Environ Pollut 144:855–861

    Article  Google Scholar 

  • Gaudette HE, Flight WR, Toner L, Folger DW (1974) An inexpensive titration method for the determination of organic carbon in recent sediments. J Sed Petrol 44:249–253

    Google Scholar 

  • Gismera J, Lacal J, daSilva P, García R, Sevilla MT, Procopio JR (2004) Study of metal fractionation in river sediments. A comparison between kinetic and sequential extraction procedures. Environ Pollut 127:175–182

    Article  Google Scholar 

  • González FA, Botello AV, Villanueva FS, Ponce-Vélez G (1994) Presencia de metales en sedimentos recientes y organismos de la laguna de Sontecomapan, Veracruz, México. Hidrobiológica 4(1–2):35–43

    Google Scholar 

  • Hart WS, Quade J, Madsen DB, Kaufman DS, Oviatt CG (2004) The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system. Geol Soc Am Bull 116(9–10):1107–1119

    Article  Google Scholar 

  • Helena B, Pardo R, Vega M, Barrado E, Fernández JM, Fernández L (2000) Temporal evolution of ground water composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Water Res 34:807–816

    Article  Google Scholar 

  • Hernández AE, Hernández VE, Botello AV, Villanueva FS (1996) Deterioro por metales del sistema lagunar de Mandinga, Veracruz, México. 6° Cong Nacional de Geo Acta INAGEQ 2:307–312

    Google Scholar 

  • Hudson PF (2003) Floodplain styles of the lower Pánuco basin, México. J Latin Am Geogr 1:58–68

    Google Scholar 

  • Hudson PF, Colditz RR (2003) Flood delineation in a large and complex alluvial valley, lower Pánuco basin, México. J Hydrol 280:229–245

    Article  Google Scholar 

  • Hudson PF, Heitmuller FT (2003) Local and water shed-scale controls on the spatial variability of natural levee deposits in a large fine-grained flood plain: lower Pánuco basin, México. Geomorphology 56:255–269

    Article  Google Scholar 

  • Hudson PF, Hendrickson DA, Benke AC, Varela-Romero A, Rodiles-Hernandez R, Minckley WL (2003) Rivers of Mexico. In: Benke AC, Cushing CE (eds) Chapter 3, Field guide to rivers of North America. Academic Press, London, p 472

    Google Scholar 

  • Ingram RL (1970) Procedures in sedimentary petrology. Wiley, New York

    Google Scholar 

  • Jacobson AD, Blum JD, Chamberlain CP, Poage ME, Sloan VF (2002) Ca/Sr and Sr isotope systematics of a Himalayan glacial chronosequence: carbonate versus silicate weathering rates as a function of landscape surface age. Geochimica Cosmochim Acta 66(1):13–27

    Article  Google Scholar 

  • Krishnamurti GSR, Huang PM, Van Rees KCJ, Kozzak LM, Rstad HPW (1995) Speciation of particulate bound cadmium in soils and its bioavailability. Analyst 120:659–665

    Article  Google Scholar 

  • Kryc KA, Murray RW, Murray DW (2003) Al-to-oxide and Ti-to-organic linkages in biogenic sediment: relationships to paleo-export production and bulk Al/Ti. Earth Planet Sci Lett 211:125–141

    Article  Google Scholar 

  • Liaghati T, Preda M, Cox M (2003) Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. Environ Int 29:935–948

    Article  Google Scholar 

  • Long ER, Mac-Donald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97

    Article  Google Scholar 

  • Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci Rev 32:235–283

    Article  Google Scholar 

  • Lozano LO, Weiss VS, Barba AG (2000) Scientific research in the Tamaulipas coastal zone, México: implications for its coastal management. Ocean Coast Manag 43:927–936

    Article  Google Scholar 

  • Mason B, Moore C (1982) Principles of geochemistry, 4th edn. Wiley, New York, NY, p 350

  • Miller WS, Zhuang L, Bottema J, Wittebrood AJ, DeSmet P, Haszler A, Vieregge A (2000) Recent developments in aluminium alloys for the automotive industry. Mater Sci Eng 280(1):37–49

    Article  Google Scholar 

  • Miranda J, Zepeda F, Galindo I (2004) The possible influence of volcanic emissions on atmospheric aerosols in the city of Colima, Mexico. Environ Pollut 127:271–279

    Article  Google Scholar 

  • Nascimento SF, Kurzweil H, Wruss W, Fenzl N (2006) Cadmium in the Amazon Guajará estuary: distribution and remobilization. Environ Pollut 140:29–42

    Article  Google Scholar 

  • Navarrete-López M, Jonathan MP, Rodríguez-Espinosa PF, Salgado-Galeana JA (2012) Autoclave decomposition method for metals in soils and sediments. Environ Monit Assess 184:2285–2293

    Google Scholar 

  • Páez-Osuna F, Botello AV, Villanueva FS (1986) Heavy metals in Coatzacoalcos estuary and Ostion lagoon. Mar Pollut Bull 11:516–519

    Article  Google Scholar 

  • Rodríguez CPA (1994) Evaluación de metales en sedimentos, aguas y biota de las lagunas Salada, El Llano y la Mancha, Veracruz, México. Unpubl Tesis de Lic, Facul de Ciencias, Univ Nac Autó de México, México DF, 124

  • Rosales-Hoz L, Edwards AC, Pérez SS, Garza EML (2005) Spatial trends in the geochemical composition of sediments in the Pánuco river discharge area, Gulf of México. Environ Geol 48:496–506

    Article  Google Scholar 

  • Rosales-Hoz L, Edwards AC, Alvarado JC, Pérez SS (2006) Spatial variability of particle associated trace elements in the Pánuco river discharge area, Gulf of México. Int J Environ Pollut 26(1/2/3):156–173

    Article  Google Scholar 

  • Rubio B, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ría de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40(11):968–980

    Article  Google Scholar 

  • Sandler A, Brenner I, Halicz L (1993) Distribution of trace elements in the filterable and acid extractable fractions waters of the northern Jordan river. Water Sci Technol 27:405–412

    Google Scholar 

  • Sarkar SK, Frančišković-Bilinski S, Bhattacharya A, Saha M, Bilinski H (2004) Levels of elements in the surficial sediments of the Hugli River, northeast India and their environmental implications. Environ Int 30:1089–1098

    Article  Google Scholar 

  • Schäfer J, Blanc G (2002) Relationships between ore deposits in river catchments and geochemistry of suspended particulate matter from six rivers in southwest France. Sci Total Environ 298:103–118

    Article  Google Scholar 

  • Sharma VK, Rhudy RB, Koening R, Vazquez FG (1999) Metals in sediments of the upper laguna Madre. Mar Pollut Bull 38:1221–1228

    Article  Google Scholar 

  • Silva-Filho EV, Jonathan MP, Chatterjee M, Sarkar SK, Sella SM, Bhattacharya A, Satpathy KK (2011) Ecological consideration of trace element contamination in sediment cores from Sundarban wetland, India. Environ Earth Sci 63:1213–1225

    Article  Google Scholar 

  • Sobczynski T, Siepak J (2001) Speciation of heavy metals in bottom sediments of lakes in the area of Wielkopolski National park. Polish J Environ Stud 10:463–474

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–850

    Article  Google Scholar 

  • Trefry JH, Presley BJ (1982) Manganese fluxes from Mississippi delta sediments. Geochim Cosmochim Acta 46:1715–1726

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1995) Test methods for evaluating solid waste. In: Physical, chemical methods: SW-846. 3rd Ed. US Government Printing off, Washington, DC

  • United States Environmental Protection Agency (USEPA) (2001) The role of screening-level risk assessments and refining contaminants of concern in Baseline ecological risk assessments, Publication 9345 0-14, EPA 540/F-01/14, June 2001

  • Vega M, Pardo R, Barrado E, Deban L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32:3581–3592

    Article  Google Scholar 

Download references

Acknowledgments

The work forms a part of the Bilateral Project between Mexico (CONACyT) and India (DST) for the first year (2009–2010). MPJ and PFRE thanks the financial support for field work from SIP Project No. 20101147, 20100606 (IPN México) and also wish to thank EDI and COFAA (IPN Mexico). MPJ and PDR also wish to express their thanks to SNI, CONACyT, México. We also wish to express our thanks to Varian, México. This article is the 62nd contribution from Earth System Science Group (ESSG), Chennai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Jonathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonathan, M.P., Roy, P.D., Rodríguez-Espinosa, P.F. et al. Evaluation of trace element concentration (acid leachable) in sediments from River Pánuco and its adjacent lagoon areas, NE México. Environ Earth Sci 68, 2239–2252 (2013). https://doi.org/10.1007/s12665-012-1906-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-1906-6

Keywords

Navigation