Skip to main content

Advertisement

Log in

Active layer thickness variations on the Qinghai–Tibet Plateau under the scenarios of climate change

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Climate change has greatly influenced the permafrost regions on the Qinghai–Tibet Plateau (QTP). Most general circulation models (GCMs) project that global warming will continue and the amplitude will amplify during the twenty-first century. Climate change has caused extensive degradation of permafrost, including thickening of the active layer, rising of ground temperature, melting of ground ice, expansion of taliks, and disappearance of sporadic permafrost. The changes in the active layer thickness (ALT) greatly impact the energy balance of the land surface, hydrological cycle, ecosystems and engineering infrastructures in the cold regions. ALT is affected by climatic, geographic and geological factors. A model based on Kudryavtsev’s formulas is used to study the potential changes of ALT in the permafrost regions on the QTP. Maps of ALT for the year 2049 and 2099 on the QTP are projected under GCM scenarios. Results indicate that ALT will increase with the rising air temperature. ALT may increase by 0.1–0.7 m for the year 2049 and 0.3–1.2 m for the year 2099. The average increment of ALT is 0.8 m with the largest increment of 1.2 m under the A1F1 scenario and 0.4 m with the largest increment of 0.6 m under the B1 scenario during the twenty-first century. ALT changes significantly in sporadic permafrost regions, while in the continuous permafrost regions of the inland plateau ALT change is relatively smaller. The largest increment of ALT occurs in the northeastern and southwestern plateaus under both scenarios because of higher ground temperatures and lower soil moisture content in these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akerman HJ, Johansson M (2008) Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafr Periglac Process 19:279–292

    Article  Google Scholar 

  • Anisimov OA, Shiklomanov NI, Nelson FE (1997) Global warming and active-layer thickness: results from transient general circulation models. Glob Planet Change 15:61–77

    Article  Google Scholar 

  • Brown J, Hinkel KM, Nelson FE (2000) The circumpolar active layer monitoring (CALM) program: research design and initial results. Polar Geogr 24:165–253

    Article  Google Scholar 

  • Burn CR (1998) The active layer: two contrasting definitions. Permafr Periglac Process 9:411–416

    Article  Google Scholar 

  • Chen W, Zhang Y, Cihlar J, Smith SL, Riseborough DW (2003) Changes in soil temperature and active layer thickness during the twentieth century in a region in western Canada. J Geophys Res 108(D22):4696. doi:10.1029/2002JD003355

    Google Scholar 

  • Cheng G (1979) Difference between Qinghai-Tibet Plateau permafrost and north Canada permafrost. J Glaciol Geocryol 2:39–43 (in Chinese with English abstract)

    Google Scholar 

  • Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res 112:F02S03. doi:10.1029/2006JF000631

  • Cheng G, Huang X, Kang X (1993) Recent permafrost degradation along the Qinghai-Tibet Highway. In: Permafrost sixth international conference proceedings, vol 2. South China University of Technology Press, Wushan, pp 1010–1013

  • Frauenfeld OW, Zhang TJ, Barry RG, Gilichinsky D (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res 109:D05101. doi:10.1029/2003JD004245

    Article  Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR et al (2005) Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change 72:251–298

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jin H, Li S, Cheng G, Wang S, Li X (2000) Permafrost and climatic change in China. Glob Planet Change 26:387–404

    Article  Google Scholar 

  • Jin H, Zhao L, Wang SL, Jin R (2006) Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway. Sci China (Ser D) 49:1170–1183

    Article  Google Scholar 

  • Jin H, Yu Q, Wang S, Lü L (2008) Changes in permafrost environments along the Qinghai–Tibet engineering corridor induced by anthropogenic activities and climate warming. Cold Reg Sci Technol 53:317–333

    Article  Google Scholar 

  • Kane DL, Hinzman LD, Zarling JP (1991) Thermal response of the active layer in a permafrost environment to climatic warming. Cold Reg Sci Technol 19:111–122

    Article  Google Scholar 

  • Kudryavtsev VA, Garagulya LS, Kondrat’yeva KA, Melamed VG (1974) Fundamentals of frost forecasting in geological engineering investigations. Cold Regions Research and Engineering Laboratory, Hanover

    Google Scholar 

  • Li X, Cheng G (1999) A GIS-aided response model of high altitude permafrost to global change. Sci China (Ser D) 42:72–79

    Google Scholar 

  • Li S, Cheng G, Guo D (1996) The future thermal regime of numerical simulating permafrost on Qinghai-Tibet Plateau, China, under climate warming. Sci China (Ser D) 39:434–441

    Google Scholar 

  • Li X, Cheng G, Jin H, Kang E, Che T, Jin R, Wu L, Nan Z, Wang J, Shen Y (2008) Cryospheric change in China. Glob Planet Change 62:210–218

    Article  Google Scholar 

  • Ling F, Zhang T (2004) A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water. Cold Reg Sci Technol 38:1–15

    Article  Google Scholar 

  • Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742

    Article  Google Scholar 

  • Lunardini VJ (1996) Climatic warming and the degradation of warm permafrost. Permafr Periglac Process 7:311–320

    Article  Google Scholar 

  • Mackay JR (1995) Active layer changes (1968 to 1993) following the forest-tundra fire near Inuvik, N.W.T., Canada. Arct Alp Res 27:323–336

    Article  Google Scholar 

  • Marchenko SS, Gorbunov AP, Romanovsky VE (2007) Permafrost warming in the Tien Shan Mountains, Central Asia. Glob Planet Change 56:311–327

    Article  Google Scholar 

  • Michaelson GJ, Ping CL, Kimble JM (1996) Carbon storage and distribution in tundra soils of Arctic Alaska, U.S.A. Arct Alp Res 28:414–424

    Article  Google Scholar 

  • Nan Z, Li S, Cheng G (2005) Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years. Sci China (Ser D) 48:797–804

    Article  Google Scholar 

  • Nelson FE, Anisimov OA (1993) Permafrost zonation in Russia under anthropogenic climatic change. Permafr Periglac Process 4:137–148

    Article  Google Scholar 

  • Nelson FE, Shiklomanov NI, Mueller GR (1997) Estimating active-layer thickness over a large region: Kuparuk River basin, Alaska, U.S.A. Arct Alp Res 29:367–378

    Article  Google Scholar 

  • Nelson FE, Anisimov OA, Shiklomanov NI (2001) Subsidence risk from thawing permafrost. Nature 410:889–890

    Article  Google Scholar 

  • Oelke C, Zhang T (2007) Modeling the active-layer depth over the Tibetan Plateau. Arct Antarct Alp Res 39(4):714–722

    Article  Google Scholar 

  • Pang Q, Cheng G, Li S, Zhang W (2009) Active layer thickness calculation over the Qinghai–Tibet Plateau. Cold Reg Sci Technol 57:23–28

    Article  Google Scholar 

  • Riseborough D, Shiklomanov N, Etzelmuller B, Gruber S, Marchenko S (2008) Recent advances in permafrost modeling. Permafr Periglac Process 19:137–156

    Article  Google Scholar 

  • Romanovsky VE, Osterkamp TE (1997) Thawing of the active layer on the coastal plain of the Alaskan Arctic. Permafr Periglac Process 8:1–22

    Article  Google Scholar 

  • Sazonova TS, Romanovsky VE (2003) A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures. Permafr Periglac Process 14:125–139

    Article  Google Scholar 

  • Slater AG, Pitman AJ, Desborough CE (1998) Simulation of freeze-thaw cycles in a general circulation model land surface scheme. J Geophys Res 103:11303–11312

    Article  Google Scholar 

  • Smith MW, Riseborough DW (2002) Climate and the limits of permafrost: a zonal analysis. Permafr Periglac Process 13:1–15

    Article  Google Scholar 

  • Wang S, Jin H, Li S, Zhao L (2000) Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts. Permafr Periglac Process 11:43–53

    Article  Google Scholar 

  • Wang G, Li Y, Wu Q, Wang Y (2006) Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Sci China (Ser D) 49:1156–1169

    Article  Google Scholar 

  • Woo MK, Arain MA, Mollinga M, Yi S (2004) A two-directional freeze and thaw algorithm for hydrologic and land surface modeling. Geophys Res Lett 31:L12504. doi:10.1029/2004GL019475

    Article  Google Scholar 

  • Wu Q, Liu Y (2004) Ground temperature monitoring and its recent change in Qinghai–Tibet Plateau. Cold Reg Sci Technol 38:85–92

    Article  Google Scholar 

  • Wu Q, Zhang T (2008) Recent permafrost warming on the Qinghai-Tibetan plateau. J Geophys Res 113:D13108. doi:10.1029/2007JD009539

    Article  Google Scholar 

  • Wu Q, Zhang T (2010) Changes in active layer thickness over the Qinghai–Tibetan Plateau from 1995 to 2007. J Geophys Res 115:D09107. doi:10.1029/2009JD012974

    Article  Google Scholar 

  • Wu Q, Li X, Li W (2000) The prediction of permafrost change along the Qinghai-Tibet Highway, China. Permafr Periglac Process 11:371–376

    Article  Google Scholar 

  • Wu Q, Shen Y, Shi B (2003) Relationship between frozen soil together with water-heat process and ecological environment in the Tibetan Plateau. J Glaciol Geocryol 25:250–254 (in Chinese with English abstract)

    Google Scholar 

  • Wu J, Sheng Y, Yu H, Li J (2007) Permafrost in the middle-east section of Qilian Mountains: characters of permafrost. J Glaciol Geocryol 29:426–432 (in Chinese with English abstract)

    Google Scholar 

  • Yang J, Ding Y, Chen R (2006) Spatial and temporal of variations of alpine vegetation cover in the source regions of the Yangtze and Yellow Rivers of the Tibetan Plateau from 1982 to 2001. Environ Geol 50:313–322

    Article  Google Scholar 

  • Zhang T, Frauenfeld OW, Serreze MC, Etringer A, Oelke C, McCreight J, Barry RG, Gilichinsky D, Yang D, Ye H, Ling F, Chudinova S (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res 110:D16101. doi:10.1029/2004JD005642

    Article  Google Scholar 

  • Zhao L, Ping CL, Yang DQ, Cheng GD, Ding YJ, Liu SY (2004) Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China. Glob Planet Change 43:19–31

    Article  Google Scholar 

  • Zhao L, Wu Q, Marchenko SS, Sharkhuu N (2010) Thermal state of permafrost and active layer in central Asia during the International Polar Year. Permafr Periglac Process 21:198–207

    Article  Google Scholar 

  • Zimov SA, Edward AG, Schuur FS (2006) Permafrost and the global carbon budget. Science 312:1612–1613

    Article  Google Scholar 

  • Zimov NS, Zimov SA, Zimova AE, Zimova GM, Chuprynin VI, Chapin FS (2009) Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: role in the global carbon budget. Geophys Res Lett 36:L02502. doi:10.1029/2008GL036332

    Article  Google Scholar 

Download references

Acknowledgments

The authors express gratitude to the anonymous reviewers for their constructive comments and suggestions and are also grateful for the help of colleagues in the Cryosphere Research Station on Qinghai–Xizang Plateau. This research is supported by the Global Change Research Program of China (2010CB951404) and the National Natural Science Foundation of China (Nos. 40830533; 41101069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangqiang Pang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, Q., Zhao, L., Li, S. et al. Active layer thickness variations on the Qinghai–Tibet Plateau under the scenarios of climate change. Environ Earth Sci 66, 849–857 (2012). https://doi.org/10.1007/s12665-011-1296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1296-1

Keywords

Navigation