Skip to main content
Log in

Permafrost warming under the earthen roadbed of the Qinghai–Tibet Railway

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the stability of the earthen roadbed built in the warm and ice-rich permafrost region. The varying thermal regime of the subgrade and the ongoing settlement of the roadbed were observed at field. The temperature data demonstrate that in warm and ice-rich permafrost regions, adoption of earthen roadbed results in warming of the underlying permafrost. It is primarily because the earthen roadbed traps the warm-season absorbed heat in the natural ground. In addition, the carried heat of the earthen roadbed that was constructed in warm season propagates downward to warm the underlying soil. The warming permafrost layer promotes the roadbed settlement, which was mostly linearly developed in the past five service years. A comprehensive analysis for the varying thermal regime and the ongoing settlement shows that the unfrozen water liberated from the warming, undrained layer experiences consolidation. The deformation of the undrained soils is mainly responsible for settlement of the roadbed. In comparison, the temperature variation of this warming permafrost layer is found to be less beneath roadbeds protected by thermosyphons or crushed rock revetments. The installation of thermosyphons into the earthen roadbed is recommended to prevent the further degradation of the underlying permafrost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersland OB, Ladanyi B (1994) An introduction to frozen ground engineering. Chapman & Hall, New York, p 342

    Google Scholar 

  • Anderson DM, Tice AR (1972) Predicting unfrozen water contents in frozen soils from surface area measurements. Highway Res Rec 393(1972):12–18

    Google Scholar 

  • Cheng G, Zhang J, Sheng Y, Chen J (2004) Principle of thermal insulation for permafrost protection. Cold Regions Sci Technol 40(1–2):71–79

    Article  Google Scholar 

  • Cheng G, Sun Z, Niu F (2008) Application of the roadbed cooling approach in Qinghai–Tibet railway engineering. Cold Regions Sci Technol 53(3):241–258

    Article  Google Scholar 

  • Chenji, Huzeyong, Doushun, Qianzeyu (2006) Yin-Yang Slope problem along Qinghai–Tibetan Lines and its radiation mechanism. Cold Regions Sci Technol 44(3):217–224

    Article  Google Scholar 

  • Feng W, Ma W, Li D, Zhang L (2006) Application investigation of awning to roadway engineering on the Qinghai–Tibet Plateau. Cold Regions Sci Technol 45(1):51–58

    Article  Google Scholar 

  • Jin H et al (2008) Assessment of frozen-ground conditions for engineering geology along the Qinghai–Tibet highway and railway, China. Eng Geol 101(3–4):96–109

    Article  Google Scholar 

  • Li G et al (2008) Study on design optimization of a crushed stone layer with shading board placed on a railway embankment on warm permafrost. Cold Regions Sci Technol 54(1):36–43

    Article  Google Scholar 

  • Ma X-J, Zhang J-M, Chang X-X, Zheng B, Zhang M-Y (2007) Experimental study on creep of warm and ice-rich frozen soil. Yantu Gongcheng Xuebao/Chin J Geotech Eng 29(6):848–852

    Google Scholar 

  • Ma W, Qi J, Wu Q (2008a) Analysis of the deformation of embankments on the Qinghai–Tibet Railway. J Geotech Geoenviron Eng 134(11):1645–1654

    Article  Google Scholar 

  • Ma X-J, Zhang J-M, Chang X-X, Zheng B, Zhang M-Y (2008b) Experimental research on strength of warm and ice-rich frozen clays. Yantu Lixue/Rock Soil Mech 29(9):2498–2502

    Google Scholar 

  • Niu F, Cheng G, Xia H, Ma L (2006) Field experiment study on effects of duct-ventilated railway embankment on protecting the underlying permafrost. Cold Regions Sci Technol 45(3):178–192

    Article  Google Scholar 

  • Niu F, Liu X, Ma W, Wu Q, Xu J (2008) Monitoring study on the boundary thermal conditions of duct-ventilated embankment in permafrost regions. Cold Regions Sci Technol 53(3):305–316

    Article  Google Scholar 

  • Qin D (2002) Environmental change evaluation of Western China. Science Press, Beijing, p 340 (In Chinese)

    Google Scholar 

  • Qin Y, Zheng B (2010) The Qinghai–Tibet railway: a landmark project and its subsequent environmental challenges. Environ Develop Sustain doi:10.1007/s10668-009-9228-x

  • Qin Y, Zhang J, Zheng B, Ma X (2009) Experimental study for the compressible behavior of warm and ice-rich frozen soil under the embankment of Qinghai–Tibet Railroad. Cold Regions Sci Technol 57(2–3):148–153

    Article  Google Scholar 

  • Qin Y, Zhang J, Li G, Qu G (2010) Settlement characteristics of unprotected embankment along the Qinghai–Tibet Railway. Cold Regions Sci Technol 60(1):84–91

    Article  Google Scholar 

  • Sheng Y et al (2006) Long-term evaluations of insulated road in the Qinghai–Tibetan plateau. Cold Regions Sci Technol 45(1):23–30

    Article  Google Scholar 

  • Simonsen E, Isacsson U (1999) Thaw weakening of pavement structures in cold regions. Cold Regions Sci Technol 29(2):135–151

    Article  Google Scholar 

  • Wen Z, Sheng Y, Ma W, Qi J, Jichun W (2005) Analysis on effect of permafrost protection by two-phase closed thermosyphon and insulation jointly in permafrost regions. Cold Regions Sci Technol 43(3):150–163

    Article  Google Scholar 

  • Wen Z, Sheng Y, Ma W, Qi J (2008) In situ experimental study on thermal protection effects of the insulation method on warm permafrost. Cold Regions Sci Technol 53(3):369–381

    Article  Google Scholar 

  • Wu J, Ma W, Sun Z, Wen Z (2010) In situ study on cooling effect of the two-phase closed thermosyphon and insulation combinational embankment of the Qinghai–Tibet Railway. Cold Regions Sci Technol 60(3):234–244

    Article  Google Scholar 

  • Yu Q, Niu F, Pan X, Bai Y, Zhang M (2008a) Investigation of embankment with temperature-controlled ventilation along the Qinghai–Tibet Railway. Cold Regions Sci Technol 53(2):193–199

    Article  Google Scholar 

  • Yu Q, Pan X, Cheng G, He N (2008b) An experimental study on the cooling mechanism of a shading board in permafrost engineering. Cold Regions Sci Technol 53(3):298–304

    Article  Google Scholar 

  • Yue Z, Ge J, Li Z, Liu Y (2007) Study on settlement of unprotected railway embankment in permafrost. Cold Regions Sci Technol 48(1):24–33

    Article  Google Scholar 

  • Zhang J (2007) Estimation on the settlement and deformation of embankment along Qinghai–Tibet railway in permafrost regions. hongguo Tiedao Kexue/China Railway Science 28(3):12–17

    Google Scholar 

  • Zhang M, Lai Y, Li S, Zhang S (2006) Laboratory investigation on cooling effect of sloped crushed-rock revetment in permafrost regions. Cold Regions Sci Technol 46(1):27–35

    Article  Google Scholar 

  • Zhang J, Ma X, Zheng B (2008a) Experimental study on mechanisms of subgrade deformation in Permafrost regions along the Qinghai–Tibetan Railway, 9th international conference on permafrost, University of Alaska at Fairbanks, USA

  • Zhang T, Baker THW, Cheng G-D, Wu Q (2008b) The Qinghai–Tibet railroad: a milestone project and its environmental impact. Cold Regions Sci Technol 53(3):229–240

    Article  Google Scholar 

  • Zheng B, Zhang J, Qin Y (2010) Investigation for the deformation of embankment underlain by warm and ice-rich permafrost. Cold Region Sci Technol 60(2010):161–168

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (NSFC No. 40730736). Supported by Fund of the State Key Laboratory of Frozen Soils Engineering (Grant Nos. SKLFSE-ZQ-02 and SKLFSE-ZY-03), and China Postdoctoral Science Foundation (Nos. 200902312 and 20080430110). The authors are indebted to Dr. LaMoreaux and two anonymous referees for their thorough, meticulous English edit across the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghong Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Y., Li, G. Permafrost warming under the earthen roadbed of the Qinghai–Tibet Railway. Environ Earth Sci 64, 1975–1983 (2011). https://doi.org/10.1007/s12665-011-1014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1014-z

Keywords

Navigation