Skip to main content

Advertisement

Log in

Composition and sources of lipid compounds in speleothem calcite from southwestern Oregon and their paleoenvironmental implications

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

We analyzed speleothem calcite from the Oregon Caves National Monument, southwestern Oregon, to determine the preservation, distribution, concentrations and sources of aliphatic lipid compounds preserved in the calcite. Maximum speleothem growth rate occurs during interglaciations and minimum during glacial intervals. Concentrations of the total lipid compounds range from 0.5 to 12.9 μg g−1. They increase at times of low speleothem growth rate, suggesting dilution, whereas the apparent accumulation rate of lipid compounds tends to be highest during times of fastest speleothem growth rate. Such increased accumulation generally corresponds to times of warm (interglacial) climate, suggesting either a greater source of organic materials during interglacial times and/or greater efficiency of compound capture during more rapid calcite growth. Aliphatic lipid compounds include homologous n-alkanoic acids, n-alkanols and methyl n-alkanoates and sterols with concentrations ranging from 0.3 to 7.8 μg g−1, 0.4 to 1.1 μg g−1, 0.5 to 9.6 μg g−1 and 0.1 to 2.7 μg g−1, respectively. Minor amounts of branched methyl n-alkanoates and dimethyl n-alkanedioates are also present. The high concentrations of methyl n-alkanoates are the result of esterification reactions of free fatty acids in alkaline solutions with high pH values associated with the dripping cave waters. The distribution patterns and geochemical parameters and indices indicate that the major sources of the aliphatic lipids involved leaching from higher plants and microbial residues derived from the soil zone above the cave system. The estimated percentage of microbial inputs ranged from 42 to 90% of the total lipids and also showed an increase in accumulation during warm climates. These well-preserved lipid compounds in speleothem calcite could be used as biomarkers for paleoenvironmental study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baker EA (1982) Chemistry and morphology of plant epicuticular waxes. In: Culter DF, Alvin K, Price CE (eds) The plant cuticle, linnean society symposium series 10. Academic Press, London

    Google Scholar 

  • Baker A, Smart PL, Edwards RL (1996) Mass spectrometric dating of flowstones from stump cross caverns and lancaster hole, Yorkshire: palaeoclimate implications. J Quat Sci 11:107–114

    Article  Google Scholar 

  • Barbier M, Tusseau D, Marty JC, Saliot A (1981) Sterols in aerosols, surface microlayer and subsurface water in the North-Eastern tropical Atlantic. Oceanol Acta 4:77–84

    Google Scholar 

  • Barenholz Y (2002) Cholesterol and other membrane active sterols: from membrane evolution to "rafts". Prog Lipid Res 41:1–5

    Article  Google Scholar 

  • Barnes CG, Donato MM, Tomlinson SL (1996) The enigmatic applegate group of southwestern Oregon: age correlation and tectonic affiliation. Oregon Geol 58:79–91

    Google Scholar 

  • Bechtel A, Reischenbacher D, Sachsenhofer RF, Gratzer R, Lücke A (2007) Paleogeography and paleoecology of the upper Miocene Zillingdorf lignite deposit (Austria). Int J Coal Geol 69:119–143

    Article  Google Scholar 

  • Bernards MA (2002) Demystifying suberin. Can J Bot 80:227–240

    Article  Google Scholar 

  • Bianchi G (1995) Plant waxes. In: Hamilton RJ (ed) Waxes: chemistry, molecular biology and functions. The Oily Press, Dundee

    Google Scholar 

  • Blyth AJ, Watson JS (2009) Thermochemolysis of organic matter preserved in stalagmites: a preliminary study. Org Geochem 40:1029–1031

    Article  Google Scholar 

  • Blyth AJ, Asrat A, Baker A, Gulliver P, Leng MJ, Genty D (2007) A new approach to detecting vegetation and land-use change using high-resolution lipid biomarker records in stalagmites. Quat Res 68:314–324

    Article  Google Scholar 

  • Blyth AJ, Baker A, Collins MJ, Penkman KEH, Gilmour MA, Moss JS, Genty D, Drysdale RN (2008) Molecular organic matter in speleothems and its potential as an environmental proxy. Quat Sci Rev 27:905–921

    Article  Google Scholar 

  • Bode HB, Zeggel B, Silakowski B, Wenzel SC, Hans R, Müller R (2003) Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacteria 2, 3(S)-oxidosqualene cyclase from the mycobacterium Stigmatella aurantiaca. Mol Microbiol 47:471–481

    Article  Google Scholar 

  • Brassell SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133

    Article  Google Scholar 

  • Briles CE, Whitlock C, Bartlein PJ (2005) Postglacial vegetation, fire, and climate history of the Siskiyou mountains, Oregon, USA. Quat Res 64:44–56

    Article  Google Scholar 

  • Brown M, Coakley J, Mayer T, Chris M, Thiessen L (2001) Application of fecal sterol ratios in sediments and effluents as source tracers. Water Qual Res J Can 36:781–792

    Google Scholar 

  • Bull ID, van Bergen PF, Nott CJ, Poulton PR, Evershed RP (2000) Organic geochemical studies of soils from the Rothamsted classical experiments—V. The fate of lipids in different long-term experiments. Org Geochem 31:389–408

    Article  Google Scholar 

  • Canuel EA, Cloern JE, Ringelberg DB, Guckert JB, Rau GH (1995) Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay. Limnol Oceanogr 40:67–81

    Article  Google Scholar 

  • Cerling TE, Quade J, Wand Y, Bowman JR (1989) Carbon isotopes in soils and paleosols as ecology and paleoecology indicators. Nature 341:138–139

    Article  Google Scholar 

  • Cheng H, Edwards RL, Hoff J, Gallup CD, Richards DA, Asmerom Y (2000) The half-lives of uranium-234 and thorium-230. Chem Geol 169:17–33

    Article  Google Scholar 

  • Chikaraishi Y, Naraoka H (2003) Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry 63:361–371

    Article  Google Scholar 

  • Cifuentes LA, Salata GG (2001) Significance of carbon isotopic discrimination between bulk carbon and extracted phospholipid fatty acids in selected terrestrial and marine environments. Org Geochem 32:613–621

    Article  Google Scholar 

  • Collister JW, Rieley G, Stern B, Eglinton G, Fry B (1994) Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Org Geochem 21:619–627

    Article  Google Scholar 

  • Cruz JFW, Burns SJ, Jercinovic M, Karmann I, Sharp WD, Vuille M (2007) Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a late Pleistocene stalagmite. Geochim Cosmochim Acta 71:2250–2263

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • de Leeuw JW, Cox HC, Bass M, Peakman TM, Graaf VD, Bass JMA (1993) Relative stability of sedimentary rearranged sterenes as calculated by molecular mechanics: a key to unravel further steroid diagenesis. Org Geochem 20:1297–1302

    Article  Google Scholar 

  • Didyk BM, Simoneit BRT, Brassell SC, Eglinton G (1978) Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272:216–222

    Article  Google Scholar 

  • Dorale JA, Edwards RL, Alexander EC Jr, Shen C-C, Richards DA, Cheng H (2004) Uranium-series disequilibrium dating of speleothems: current techniques, limits, and applications. In: Sasowsky ID, Mylroie J (eds) Studies of cave sediments. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Dreybrodt W (1988) Processes in karst systems. Springer, Berlin

    Google Scholar 

  • Dreybrodt W (1999) Chemical kinetics, speleothem growth and climate. Boreas 28:347–356

    Article  Google Scholar 

  • Edwards LR, Chen JH, Wasserburg GJ (1987) 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet Sci Lett 81:175–192

    Article  Google Scholar 

  • Ersek V, Hostetler SW, Cheng H, Clark PU, Anslow FS, Mix AC, Edwards LR (2009) Environmental influences on speleothem growth in southwestern Oregon during the last 380 000 years. Earth Planet Sci Lett 279:316–325

    Article  Google Scholar 

  • Fairchild IJ, Smith CL, Baker A, Fuller L, Spötl C, Mattey D, McDermott F (2006) Modification and preservation of environmental signals in speleothems. Earth Sci Rev 75:105–153

    Article  Google Scholar 

  • Freeman KH, Hayes JM, Trendel JM, Albrecht P (1989) Evidence from GC-MS carbon isotopic measurements for multiple origins of sedimentary hydrocarbons. Nature 353:254–256

    Google Scholar 

  • Gallup CD, Cheng H, Taylor FW, Edwards RL (2002) Direct determination of the timing of sea level change during termination II. Science 295:310–313

    Article  Google Scholar 

  • Genty D, Baker A, Massault M, Proctor C, Gilmour M, Pons-Branchu E, Hamelin B (2001) Dead carbon in stalagmites: carbonate bedrock palaeodissolution vs ageing of soil organic matter: implications for 13C variations in speleothems. Geochim Cosmochim Acta 65:3443–3457

    Article  Google Scholar 

  • Giner J-L, Boyer GLP (1998) Sterols of the brown tide alga Aureococcus anophagefferens. Phytochemistry 48:475–477

    Article  Google Scholar 

  • Giner J-L, Li X (2001) Stereospecific synthesis of 24-propylcholesterol isolated from the Texas brown tide. Tetrahedron 56:9575–9580

    Article  Google Scholar 

  • Gõni MA, Hedges JI (1990a) Cutin-derived CuO reaction products from purified cuticles and tree leaves. Geochim Cosmochim Acta 54:3065–3072

    Article  Google Scholar 

  • Gõni MA, Hedges JI (1990b) Potential applications of cutin-derived CuO reaction productions for discriminating vascular plant sources in natural environments. Geochim Cosmochim Acta 54:3073–3081

    Article  Google Scholar 

  • Gough MA, Fauzi R, Mantoura C, Preston M (1993) Terrestrial plant biopolymers in marine sediments. Geochim Cosmochim Acta 57:945–964

    Article  Google Scholar 

  • Harmon RS, Schwarcz HP, Gascoyne M, Hess JW, Ford DC (2004) Palaeoclimate information from speleothems: the present as a guide to the past. In: Sasowsky ID, Mylroie J (eds) Studies of cave sediments. Physical and chemical records of paleoclimate. Kluwer Academic, New York

    Google Scholar 

  • Harwood JL, Russell NJ (1984) Lipids in plants and microbes. George Allen & Unwin, London

    Google Scholar 

  • Henderson GM, Slowey NC (2000) Evidence against northern-hemisphere forcing of the penultimate deglaciation from U-Th dating. Nature 402:61–66

    Article  Google Scholar 

  • Hendy CH (1971) The isotopic geochemistry of speleothems: I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Geochim Cosmochim Acta 35:801–824

    Article  Google Scholar 

  • Holloway PJ (1982) The chemical composition of plant cutins. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Linnean society symposium series 10. Academic Press, London, pp 45–85

    Google Scholar 

  • Huang Y, Street-Perrott FA, Perrott RA, Metzger P, Eglinton G (1999) Glacial-interglacial environmental changes inferred from molecular and compound specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya. Geochim Cosmochim Acta 63:1383–1404

    Article  Google Scholar 

  • Jennings JN (1985) Cave and karst terminology. In: Mathews PG (ed) Australian karst index, Australian speleological federation

  • Kögel-Knabner I (2000) Analytical approaches for characterizing soil organic matter. Org Geochem 31:601–625

    Article  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Kolattukudy PE, Espelie KE (1989) Chemistry, biochemistry, and function of suberin and associated waxes. In: Rowe JW (ed) Natural products of woody plants I. Springer, Berlin

    Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long term numerical solution for the insulation quantities of the Earth. Astron Astrophys 428:261–285

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A pliocene-pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20. doi:10.1029/2004PA001071

  • Lücke A, Helle G, Schleser GH, Figueiral I, Mosbrugger V, Jones TP, Rowe NP (1999) Environmental history of the German lower rhine embayment during the Middle miocene as reflected by carbon isotopes in brown coal. Palaeogeogr Palaeoclimatol Palaeoecol 154:339–352

    Article  Google Scholar 

  • Marseille F, Disnar RT, Guilet B, Noack Y (1999) N-Alkanes and fatty acids in humas and A1 horizon of soil under beach, spruce and grass in Massif-Central, France. Eur J Soil Sci 50:433–441

    Article  Google Scholar 

  • Marynowski L, Otto A, Zatoń M, Philippe M, Simoneit BRT (2007) Biomolecules preserved in ca.168 million year old fossil conifer wood. Naturwissenschaften 94:228–236

    Article  Google Scholar 

  • Marzi R, Torkelson BE, Olson RK (1993) A revised carbon preference index. Org Geochem 20:1303–1306

    Article  Google Scholar 

  • McDermott F (2004) Paleo-climate reconstruction from stable isotope variations in speleothems: a review. Quat Sci Rev 23:901–918

    Article  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of palaeoceanographic, palaeolimnologic, and palaeoclimatic processes. Org Geochem 27:213–250

    Article  Google Scholar 

  • Moers MEC, Bass M, de Leeuw JW, Boon JJ, Schenck PA (1990) Occurrence and origin of carbohydrates in peat samples from a red mangrove environment as reflected by abundance of neutral monosaccharides. Geochim Cosmochim Acta 54:2463–2472

    Article  Google Scholar 

  • Moore GW (1952) Speleothem—a new cave term. Natl Speleol Soc News 10:32–33

    Google Scholar 

  • Moreau RA, Whitaker BD, Kicks KB (2002) Phytosterols, phytostanols and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41:457–500

    Article  Google Scholar 

  • Nott CJ, Xie S, Avsejs LA, Maddy D, Chambers FM, Evershed RP (2000) n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation. Org Geochem 31:231–235

    Article  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–568

    Article  Google Scholar 

  • Otto A, Simpson MJ (2006) Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada. Org Geochem 37:385–407

    Article  Google Scholar 

  • Otto A, Wilde V (2001) Sesqui-, di- and triterpenoids as chemosystematic markers in extant conifers—a review. Bot Rev 67:141–238

    Article  Google Scholar 

  • Otto A, Simoneit BRT, Wilde V (2007) Terpenoids as chemosystematic markers in selected fossil and extant species of pine (Pinus, Pinaceae). Bot J Linn Soc 154:870–883

    Article  Google Scholar 

  • Pancost RD, Bass M, van Geel B, Sinninghe-Damsté JS (2002) Biomarkers as proxies for plant inputs to peats: an example from a subboreal ombrotrophic bog. Org Geochem 33:675–690

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kolyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  Google Scholar 

  • Philp RP (1985) Fossil fuel biomarkers. Applications and spectra; methods in geochemistry and geophysics, vol. 23. Elsevier, Amsterdam, p 294

  • Prahl FG, Ertel JR, Goñi MA, Sparrow MA, Eversmeyer B (1994) Terrestrial organic carbon contributions to sediments on the Washington margin. Geochim Cosmochim Acta 58:3035–3048

    Article  Google Scholar 

  • Richards DA, Dorale JA (2003) Uranium-series chronology and environmental applications of speleothems. Rev Mineral Geochem 52:407–460

    Article  Google Scholar 

  • Rieley G, Collier RJ, Jones DM, Eglinton G, Eakin PA, Fallick AE (1991) Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature 352:425–427

    Article  Google Scholar 

  • Rieley G, Collister JW, Stern B, Eglinton G (1993) Gas-chromatography/isotope ratio mass spectrometry of leaf wax n-alkanes from plants with differing carbon dioxide metabolisms. Rapid Commun Mass Spectrom 7:488–491

    Article  Google Scholar 

  • Robinson N, Eglinton G, Brassell SC, Cranwell PA (1984) Dinoflagellate origin for sedimentary 4α-methylsteroids and 5α(H)-stanols. Nature 308:439–442

    Article  Google Scholar 

  • Rousseau L, Laafar S, Pepe D, De Lumley H (1995) Sterols as biogeochemical markers: results from Ensemble E of the stalagmitic floor, Grootte Du Lazaret, Nice, France. Quat Sci Rev 14:51–59

    Article  Google Scholar 

  • Rushdi AI, DouAboul AA, Mohamed SS, Simoneit BRT (2006) Distribution and sources of extractable organic matter in the Mesopotamian wetland marsh sediments of Iraq: I. Aliphatic lipids. Env Geol 50:1171–1181

    Article  Google Scholar 

  • Sauer PE, Eglinton TI, Hayes JM, Schimmelmann A, Sessions AL (2001) Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim Cosmochim Acta 65:213–222

    Article  Google Scholar 

  • Schwab VF, Spangenberg JE (2007) Molecular and isotopic characterisation of biomarkers in the Frick Swiss Jura sediments: a palaeoenvironmental reconstruction on the northern Tethys margin. Org Geochem 38:419–439

    Article  Google Scholar 

  • Shen C-C, Edwards LR, Cheng H, Dorale JA, Thomas RB, Moran BS, Weinstein SE, Edmonds HN (2002) Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chem Geol 185:165–178

    Article  Google Scholar 

  • Simoneit BRT (1977) Organic matter in eolian dusts over the Atlantic ocean. Mar Chem 5:443–464

    Article  Google Scholar 

  • Simoneit BRT (1989) Organic matter of the troposphere—V: application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations. J Atmos Chem 8:251–275

    Article  Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384

    Article  Google Scholar 

  • Smith FA, Freeman KH (2006) Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses. Geochim Cosmochim Acta 17:1172–1187

    Article  Google Scholar 

  • Snoke AW, Barnes CG (2006) The development of tectonic concepts for the Klamath mountains province, California and Oregon. In: Snoke AW, Barnes CG (eds) Geological studies in the Klamath mountains province, California and Oregon. The Geological Society of America Special Paper 410. Geological Society of America, Boulder

  • Spiker EC, Hatcher PG (1987) The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood. Geochim Cosmochim Acta 51:1385–1391

    Article  Google Scholar 

  • Spötl C, Mangini A (2002) Stalagmite from the Austrian Alps reveals Dansgaard–Oeschger events during isotope stage 3: implications for the absolute chronology of Greenland ice cores. Earth Planet Sci Lett 203:507–518

    Article  Google Scholar 

  • Spötl C, Mangini A, Frank N, Eichstadter R, Burns S (2002) Start of the last interglacial period at 135 ka: evidence from a high Alpine speleothem. Geology 30:815–818

    Article  Google Scholar 

  • Stirling CH, Esat TM, Lambeck K, McCulloch MT (1998) Timing and duration of the last interglacial: evidence for a restricted interval of widespread coral reef growth. Earth Planet Sci Lett 160:745–762

    Article  Google Scholar 

  • Taylor GH, Hannan C (1999) The climate of Oregon: from rain forest to desert. Oregon State University Press, Corvallis

    Google Scholar 

  • Tulloch AP (1976) Chemistry of waxes of higher plants. In: Kolattukudy PE (ed) Chemistry and biochemistry of natural waxes. Elsevier, Amsterdam

    Google Scholar 

  • Turgeon S, Lundberg J (2001) Chronology of discontinuities and petrology of speleothems as paleoclimatic indicators of the Klamath mountains, Southwest Oregon, USA. Carbon Evaporites 16:153–167

    Article  Google Scholar 

  • Turgeon SC, Lundberg J (2004) Establishing a speleothem chronology for southwestern Oregon—climatic controls and growth modeling. In: Sasowsky ID, Mylroie J (eds) Studies of cave sediments. Physical and chemical records of paleoclimate. Kluwer, New York

    Google Scholar 

  • Vacco DA, Clark PU, Mix AC, Cheng H, Edwards R (2005) A speleothem record of younger Dryas cooling, Klamath mountains, Oregon, USA. Quat Res 64:249–256

    Article  Google Scholar 

  • van Kaam-Peters HME, Schouten S, Köster J, Sinninghe Damsté JS (1998) Controls on the molecular and carbon isotopic composition of organic matter deposited in a Kimmeridgian euxinic shelf sea: evidence for preservation of carbohydrates through sulfurisation. Geochim Cosmochim Acta 62:3259–3283

    Article  Google Scholar 

  • Whitlock C, Bartlein PJ (1997) Vegetation and climate change in northwest America during the past 125 kyr. Nature 388:57–61

    Article  Google Scholar 

  • Xie S, Yi Y, Huang J, Hu C, Cai Y, Collins M, Baker A (2003) Lipid distribution in a subtropical southern China stalagmite as a record of soil ecosystem response to paleoclimate change. Quat Res 60:340–347

    Article  Google Scholar 

  • Xu Y, Simoneit BRT, Jaffé R (2007) Occurrence of long-chain n-alkenols, diols, keto-ols and sec-alkanols in a sediment core from a hypereutrophic, freshwater lake. Org Geochem 38:870–883

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff at Oregon Caves National Monument for their support. This research was supported by the NSF Paleoclimate Program (0502636).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed I. Rushdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rushdi, A.I., Clark, P.U., Mix, A.C. et al. Composition and sources of lipid compounds in speleothem calcite from southwestern Oregon and their paleoenvironmental implications. Environ Earth Sci 62, 1245–1261 (2011). https://doi.org/10.1007/s12665-010-0613-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-010-0613-4

Keywords

Navigation