Skip to main content

Advertisement

Log in

ADAMTS13 deficiency, despite well-compensated liver functions in patients with noncirrhotic portal hypertension

  • Original Article
  • Published:
Indian Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

We have reported A disintegrin and metalloprotease with thrombospondin type 1 motif, member 13 (ADAMTS13) deficiency in noncirrhotic intrahepatic portal hypertension (NCIPH) patients of European origin with preserved liver function. We aimed to study ADAMTS13–von Willebrand factor (vWF) imbalance in Indian patients with NCIPH.

Methods

Twenty-nine cases with NCIPH [22 males; 29 years (13–58); Child’s A, 23; B, 6], 22 disease controls with cryptogenic chronic liver disease [15 males; 46 years (18–74); Child’s A, 9; B, 9; C, 4] and 17 healthy controls [14 males; 32 years (27–45)] were enrolled in the study. We measured ADAMTS13 antigen and activity (by collagen binding assay (CBA) and by fluorescence resonance energy transfer [FRET] assay), and vWF antigen levels in plasma of study patients.

Results

ADAMTS13 activity by CBA in NCIPH patients (32 %, 5 % to 100 %; median, range; p-value <0.001) and disease controls (36 %, 5 % to 144 %; p = 0.001) was significantly lower than in healthy controls (87 %; 60 % to 148 %). ADAMTS13 antigen and activity by FRET assay were also lower in cases and disease controls. ADAMTS13 activity (by CBA) to antigen ratio was lower in NCIPH and disease controls than in healthy controls. Of 29 NCIPH patients, 3 (all in Child’s A) had severe ADAMTS13 deficiency (<10 % ADAMTS13 activity), and 8 (Child’s A, 7; B, 1) had moderate ADAMTS13 deficiency (10 % to 25 % activity). Conversely, vWF antigen and vWF:ADAMTS13 ratio were higher in patients with NCIPH and in disease controls than in healthy controls.

Conclusions

This study validates the finding of ADAMTS13 deficiency in NCIPH despite preserved liver functions in an Indian population suggesting its involvement in pathogenesis of NCIPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wanless IR, Wong F, Blendis LM, Greig P, Heathcote EJ, Levy G. Hepatic and portal vein thrombosis in cirrhosis: possible role in development of parenchymal extinction and portal hypertension. Hepatology. 1995;21:1238–47.

    CAS  PubMed  Google Scholar 

  2. Madhu K, Ramakrishna B, Zachariah U, Eapen CE, Kurian G. Non-cirrhotic intrahepatic portal hypertension. Gut. 2008;57:1529.

    Article  CAS  PubMed  Google Scholar 

  3. Tsuneyama K, Kouda W, Nakanuma Y. Portal and parenchymal alterations of the liver in idiopathic portal hypertension: a histological and immunochemical study. Pathol Res Pract. 2002;198:597–603.

    Article  PubMed  Google Scholar 

  4. Okuda K. Non-cirrhotic portal hypertension: why is it so common in India? J Gastroenterol Hepatol. 2002;17:1–5.

    Article  PubMed  Google Scholar 

  5. Goel A, Madhu K, Zachariah U, et al. A study of aetiology of portal hypertension in adults (including the elderly) at a tertiary centre in southern India. Indian J Med Res. 2013;137:922–7.

    PubMed Central  PubMed  Google Scholar 

  6. Goel A, Ramakrishna B, Madhu K, et al. Idiopathic noncirrhotic intrahepatic portal hypertension is an ongoing problem in India. Hepatology. 2011;54:2274.

    Article  PubMed  Google Scholar 

  7. Madhu K, Avinash B, Ramakrishna B, et al. Idiopathic non-cirrhotic intrahepatic portal hypertension: common cause of cryptogenic intrahepatic portal hypertension in a Southern Indian tertiary hospital. Indian J Gastroenterol. 2009;28:83–7.

    Article  PubMed  Google Scholar 

  8. Hu LS, George J, Wang JH. Current concepts on the role of nitric oxide in portal hypertension. World J Gastroenterol. 2013;19:1707–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Remuzzi G, Galbusera M, Noris M, et al. von Willebrand factor cleaving protease (ADAMTS13) is deficient in recurrent and familial thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Blood. 2002;100:778–85.

    Article  CAS  PubMed  Google Scholar 

  10. Ferlitsch M, Reiberger T, Hoke M, et al. von Willebrand factor as new noninvasive predictor of portal hypertension, decompensation and mortality in patients with liver cirrhosis. Hepatology. 2012;56:1439–47.

    Article  CAS  PubMed  Google Scholar 

  11. Lisman T, Bongers TN, Adelmeijer J, et al. Elevated levels of von Willebrand factor in cirrhosis support platelet adhesion despite reduced functional capacity. Hepatology. 2006;44:53–61.

    Article  CAS  PubMed  Google Scholar 

  12. Uemura M, Fujimura Y, Matsumoto M, et al. Comprehensive analysis of ADAMTS13 in patients with liver cirrhosis. Thromb Haemost. 2008;99:1019–29.

    CAS  PubMed  Google Scholar 

  13. Mackie I, Eapen CE, Neil D, et al. Idiopathic noncirrhotic intrahepatic portal hypertension is associated with sustained ADAMTS13 deficiency. Dig Dis Sci. 2013;56:2456–65.

    Article  Google Scholar 

  14. Hillaire S, Bonte E, Denninger MH, et al. Idiopathic non-cirrhotic intrahepatic portal hypertension in the West: a re-evaluation in 28 patients. Gut. 2002;51:275–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Das NK, Sengupta SR. Arsenicosis: diagnosis and treatment. Indian J Dermatol Venereol Leprol. 2008;74:571–81.

    Article  PubMed  Google Scholar 

  16. Mackie I, Langley K, Chitolie A, et al. Discrepancies between ADAMTS13 activity assays in patients with thrombotic microangiopathies. Thromb Haemost. 2013;109:488–96.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou W, Inada M, Lee TP, et al. ADAMTS13 is expressed in hepatic stellate cells. Lab Investig. 2005;85:780–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Uemura M, Tatsumi K, Matsumoto M, et al. Localization of ADAMTS13 to the stellate cells of human liver. Blood. 2005;106:922–4.

    Article  CAS  PubMed  Google Scholar 

  19. Elias JE, Mackie I, Eapen CE, Chu P, Shaw JC, Elias E. Porto-pulmonary hypertension exacerbated by platelet transfusion in a patient with ADAMTS13 deficiency. J Hepatol. 2013;58:827–30.

    Article  CAS  PubMed  Google Scholar 

  20. La Mura V, Reverter JC, Flores-Arroyo A, et al. Von Willebrand factor levels predict clinical outcome in patients with cirrhosis and portal hypertension. Gut. 2011;60:1133–8.

    Article  PubMed  Google Scholar 

  21. Eapen CE, Elias JE, Mackie I, Elias E. Prognostic significance of von Willebrand factor in cirrhosis: a possible mechanism. Hepatology. 2013;58:1189.

    Article  PubMed  Google Scholar 

  22. Poordad F. Thrombocytopenia in chronic liver disease. Aliment Pharmacol Ther. 2007;26 Suppl 1:5–11.

    Article  CAS  PubMed  Google Scholar 

  23. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000;275:2247–50.

    Article  CAS  PubMed  Google Scholar 

  24. Eapen CE, Nightingale P, Hubscher SG, et al. Non-cirrhotic intrahepatic portal hypertension: associated gut diseases and prognostic factors. Dig Dis Sci. 2011;56:227–35.

    Article  CAS  PubMed  Google Scholar 

  25. Bernardo A, Ball C, Nolasco L, Moake JF, Dong JF. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood. 2004;104:100–6.

    Article  CAS  PubMed  Google Scholar 

  26. Cao WJ, Niiya M, Zheng XW, Shang DZ, Zheng XL. Inflammatory cytokines inhibit ADAMTS13 synthesis in hepatic stellate cells and endothelial cells. J Thromb Haemost. 2008;6:1233–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Manavalan JS, Hernandez L, Shah JG, et al. Serum cytokine elevations in celiac disease: association with disease presentation. Hum Immunol. 2010;71:50–7.

    Article  CAS  PubMed  Google Scholar 

  28. Kumar P, Kumar M, Ramanathan AL, Tsujimura M. Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: a source identification perspective. Environ Geochem Health. 2010;32:129–46.

    Article  CAS  PubMed  Google Scholar 

  29. Kao YH, Yu CL, Chang LW, Yu HS. Low concentrations of arsenic induce vascular endothelial growth factor and nitric oxide release and stimulate angiogenesis in vitro. Chem Res Toxicol. 2003;16:460–8.

    Article  CAS  PubMed  Google Scholar 

  30. Sarin SK. Non-cirrhotic portal fibrosis. Gut. 1989;30:406–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Peyvandi F, Palla R, Lotta LA, Mackie I, Scully MA, Machin SJ. ADAMTS-13 assays in thrombotic thrombocytopenic purpura. J Thromb Haemost. 2010;8:631–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

AG, PLA, SCN, IM, BR, JM, SNK, CEE, and EE all declare that they have no conflicts of interest.

Ethics statement

The study was performed in a manner to conform with the Helsinki Declaration of 1975, as revised in 2000 and 2008 concerning Human and Animal Rights, and the authors followed the policy concerning informed consent as shown on Springer.com.

Financial support

The authors are grateful for funds received from the Fluid Research Fund at Christian Medical College, Vellore, India, for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Eapen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, A., Alagammai, P.L., Nair, S.C. et al. ADAMTS13 deficiency, despite well-compensated liver functions in patients with noncirrhotic portal hypertension. Indian J Gastroenterol 33, 355–363 (2014). https://doi.org/10.1007/s12664-014-0460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12664-014-0460-4

Keywords

Navigation