Skip to main content

Advertisement

Log in

How does the Number of Implants Affect Stress Distribution in Fibula Graft at the Posterior of the Mandible? A Finite Element Analysis

  • Original Article
  • Published:
Journal of Maxillofacial and Oral Surgery Aims and scope Submit manuscript

Abstract

Objectives

Evidence about the implant protocol and success in the osseous microvascular grafts is not sufficient. Stress distribution around dental implants is one of the important factors determining treatment success. The purpose of this study was to evaluate stress distribution in the bone supporting the implants inserted in the fibula free flap, in patients with large defects in the posterior of the mandible by finite element analysis (FEA).

Materials and Methods

The CBCT was obtained from one patient with fibula free flap in the posterior of the mandible and also from a 4.1 × 10 mm implant (Zimmer, Zimmer dental, Carlsbad, USA). Two 3D finite models were designed containing three or four implants. The implants were splinted by a suprastructure. Vertical load (300 N) and oblique load (50 N) were applied to the suprastructure. The von Mises stress distribution and the micromotion of implants were evaluated.

Results

No significant difference was observed between implants micromotion in two models. According to stress distribution analysis and determining maximum stress regions, the model with four implants imposes more stress on titanium components and surrounding bone.

Conclusion

The stress distribution around the implants of mandibular models with posterior defect that was reconstructed with fibula free flap is better in models with three fixtures versus four fixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Data and material are available.

References

  1. Weischer T, Schettler D, Mohr C (1996) Concept of surgical and implant-supported prostheses in the rehabilitation of patients with oral cancer. Int J Oral Maxillofac Implant 11(6):775–781

    CAS  Google Scholar 

  2. Mericske-Stern R, Perren R, Raveh J (1999) Life table analysis and clinical evaluation of oral implants supporting prostheses after resection of malignant tumors. Int J Oral Maxillofac Implants 14(5):673–680

    CAS  PubMed  Google Scholar 

  3. Hayden RE, Mullin DP, Patel AK (2012) Reconstruction of the segmental mandibular defect: current state of the art. Curr Opin Otolaryngol Head Neck Surg 20(4):231–236

    Article  PubMed  Google Scholar 

  4. Eckardt A, Fokas K (2003) Microsurgical reconstruction in the head and neck region: an 18-year experience with 500 consecutive cases. J Cranio-Maxillofaci Surg 31(4):197–201

    Article  Google Scholar 

  5. Daya M (2008) Peroneal artery perforator chimeric flap: changing the perspective in free fibula flap use in complex oromandibular reconstruction. J Reconstr Microsurg 24(06):413–418

    Article  PubMed  Google Scholar 

  6. O’Leary MJ, Martin PJ, Hayden RE (1994) The neurocutaneous free fibula flap in mandibular reconstruction. Otolaryngol Clin North Am 27(6):1081–1096

    Article  CAS  PubMed  Google Scholar 

  7. Colletti G, Autelitano L, Rabbiosi D, Biglioli F, Chiapasco M, Mandalà M et al (2014) Technical refinements in mandibular reconstruction with free fibula flaps: outcome-oriented retrospective review of 99 cases. Acta Otorhinolaryngologica Italica 34(5):342

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hidalgo DA (1989) Fibula free flap: a new method of mandible reconstruction. Plast Reconstr Surg 84(1):71–79

    Article  CAS  PubMed  Google Scholar 

  9. Chiapasco M, Biglioli F, Autelitano L, Romeo E, Brusati R (2006) Clinical outcome of dental implants placed in fibula-free flaps used for the reconstruction of maxillo-mandibular defects following ablation for tumors or osteoradionecrosis. Clin Oral Implant Res 17(2):220–228

    Article  Google Scholar 

  10. Rho JY, Ashman RB, Turner CH (1993) Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 26(2):111–119

    Article  CAS  PubMed  Google Scholar 

  11. Nagasao T, Kobayashi M, Tsuchiya Y, Kaneko T, Nakajima T (2002) Finite element analysis of the stresses around endosseous implants in various reconstructed mandibular models. J Cranio-Maxillofac Surg 30(3):170–177. https://doi.org/10.1054/jcms.2002.0310

    Article  CAS  Google Scholar 

  12. Menicucci G, Mossolov A, Mozzati M, Lorenzetti M, Preti G (2002) Tooth–implant connection: some biomechanical aspects based on finite element analyses. Clin Oral Implant Res 13(3):334–341

    Article  Google Scholar 

  13. Geng J-P, Tan KB, Liu G-R (2001) Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 85(6):585–598

    Article  CAS  PubMed  Google Scholar 

  14. Papavasiliou G, Kamposiora P, Bayne S, Felton D (1997) 3D-FEA of osseointegration percentages and patterns on implant-bone interfacial stresses. J Dent 25(6):485–491

    Article  CAS  PubMed  Google Scholar 

  15. Ashman R, Van Buskirk W (1987) The elastic properties of a human mandible. Adv Dent Res 1(1):64–67

    Article  CAS  PubMed  Google Scholar 

  16. Klesper B, Wahn J, Koebke J (2000) Comparisons of bone volumes and densities relating to osseointegrated implants in microvascularly reconstructed mandibles: a study of cadaveric radius and fibula bones. J Craniomaxillofac Surg 28(2):110–115

    Article  CAS  PubMed  Google Scholar 

  17. Himmlova L, Dostálová T, Kácovský A, Konvičková S (2004) Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent 91(1):20–5

    Article  PubMed  Google Scholar 

  18. Rubo JH, Capello Souza EA (2008) Finite element analysis of stress in bone adjacent to dental implants. J Oral Implantol 34(5):248–255

    Article  PubMed  Google Scholar 

  19. Holmes DC, Loftus JT (1997) Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol 23(3):104–111

    CAS  PubMed  Google Scholar 

  20. Ichikawa T, Kanitani H, Wigianto R, Kawamoto N, Matsumoto N (1997) Abstract. Clin Oral Implant Res 8(1):18–22

    Article  CAS  Google Scholar 

  21. Simsek B, Erkmen E, Yilmaz D, Eser A (2006) Effects of different inter-implant distances on the stress distribution around endosseous implants in posterior mandible: a 3D finite element analysis. Med Eng Phys 28(3):199–213

    Article  PubMed  Google Scholar 

  22. Clelland NL, Gilat A, McGlumphy EA, Brantley WA (1993) A photoelastic and strain gauge analysis of angled abutments for an implant system. Int J Oral Maxillofac Implants 8(5):17–31

    Google Scholar 

  23. Rieger M, Fareed K, Adams W, Tanquist R (1989) Bone stress distribution for three endosseous implants. J Prosthet Dent 61(2):223–228

    Article  CAS  PubMed  Google Scholar 

  24. French AA (1989) Comparison of periimplant stresses transmitted by four commercially available osseointegrated implants. Int J Periodont Restorative Dent 9:221–230

    CAS  Google Scholar 

  25. Liu B, Li D (2000) Functional construction of mandible after oncologic surgery. Pract Oncol 15:366–370

    Google Scholar 

  26. Ying T, Wang DM, Tong J, Wang CT, Zhang CP (2006) Three-dimensional finite-element analysis investigating the biomechanical effects of human mandibular reconstruction with autogenous bone grafts. J Cranio-Maxillofac Surg 34(5):290–298

    Article  Google Scholar 

  27. Anne-Gaëlle B, Samuel S, Julie B, Renaud L, Pierre B (2011) Dental implant placement after mandibular reconstruction by microvascular free fibula flap: current knowledge and remaining questions. Oral Oncol 47:1099–1110

    Article  PubMed  Google Scholar 

  28. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E (2004) The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite element study. J Prosthet Dent 91:144–150

    Article  PubMed  Google Scholar 

  29. Goker F, Baj A, Bolzoni AR, Maiorana C, Gianni AB, Fabbro MD (2020) Dental implant-based oral rehabilitation in patients reconstructed with free fibula flaps: clinical study with a follow-up 3 to 6 years. Clin Implant Dent Relat Res 22:514–522

    Article  PubMed  Google Scholar 

  30. Nesappan T, Ariga P (2014) Comparison of stresses around dental implants placed in normal and fibula reconstructed mandibular models using finite element analysis. J Clin Diagn Res JCDR 8(8):ZC45

    PubMed  Google Scholar 

  31. Kumar VV, Jacob P, Ebenezer S, Kuriakose MA, Kekatpure V, Baliarsing AS et al (2016) Implant supported dental rehabilitation following segmental mandibular reconstruction-quality of life outcomes of a prospective randomized trial. J Cranio-Maxillofac Surg 44(7):800–810

    Article  Google Scholar 

  32. Kumar VV, Ebenezer S, Kämmerer PW, Jacob P, Kuriakose MA, Hedne N et al (2016) Implants in free fibula flap supporting dental rehabilitation–Implant and peri-implant related outcomes of a randomized clinical trial. J Cranio-Maxillofac Surg 44(11):1849–1858

    Article  Google Scholar 

  33. Huang YF, Liu SP, Muo CH, Chang CT (2020) Prosthetic design related to peri-implant bone resorption in microvascular free fibular flap among patients with oral cancer: a retrospective clinical study. J Prosthet Dent 124:395–399

    Article  PubMed  Google Scholar 

  34. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille J (1998) Timing of loading and effect of micromotion on bone–dental implant interface: review of experimental literature. J Biomed Mater Res 43(2):192–203

    Article  CAS  PubMed  Google Scholar 

  35. Pilliar R, Lee J, Maniatopoulos C (1986) Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res 208:108–113

    Article  Google Scholar 

  36. Wu JCH, Chen CS, Yip SW, Hsu ML (2012) Stress distribution and micromotion analyses of immediately loaded implants of varying lengths in the mandible and fibular bone grafts: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants 27:77–84

    Google Scholar 

Download references

Acknowledgements

The authors claim to have no financial interests, either directly or indirectly, in the products or information listed in this article.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, material preparation, data collection and analysis. The first draft of the manuscript was written by Mohammadreza Hosseinikordkheili and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fatemeh Latifi.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latifi, F., Tabrizi, R. & Hosseinikordkheili, M. How does the Number of Implants Affect Stress Distribution in Fibula Graft at the Posterior of the Mandible? A Finite Element Analysis. J. Maxillofac. Oral Surg. 22, 304–312 (2023). https://doi.org/10.1007/s12663-022-01743-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12663-022-01743-0

Keywords

Navigation