Skip to main content

Advertisement

Log in

Effect of Diode Laser on Healing of Tooth Extraction Socket: An Experimental Study in Rabbits

  • Research Paper
  • Published:
Journal of Maxillofacial and Oral Surgery Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the effect of low-level laser therapy on healing of extracted tooth socket of healthy rabbits.

Design

The sample of this study was 20 male rabbits of 2–2.5 kg weight with age range of 8–12 months. Right and left lower first premolar teeth were extracted. The extraction sockets of lower right first premolar were irradiated with 0.9 W gallium-aluminum-arsenide (GaAlAs) diode laser for 5 min, immediately after extraction and then every 72 h for the next 12 days. The extraction socket of left side were not exposed to laser and served as a control. The animals were sacrificed after 7, 14, 30 and 45 days and the experimental and control sockets were removed from the harvested mandibles and prepared for haematoxylin and eosin staining and Masson’s stain. The prepared slides were examined under light microscope for histological and histomorphometric examination.

Results

The histological examination showed that diode laser-treated sockets demonstrated early formed new bone with faster maturation of primary bone to secondary bone as compared to non-treated control sockets. Histomorphometric analysis revealed a statistically significant increase in the density and volume of trabecular bone in laser-treated sockets than control sockets.

Conclusion

Diode laser application to tooth extraction socket has a positive effect on bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hita-Iglesias P, Torres-Lagares D, Flores-Ruiz R, Magallanes-Abad N, Basallote-Gonzalez M, Gutierrez-Perez J (2008) Effectiveness of chlorhexidine gel versus chlorhexidine rinse in reducing alveolar osteitis in mandibular third molar surgery. J Oral Maxillofac Surg 66(3):441–445

    Article  PubMed  Google Scholar 

  2. Eshghpour M, Moradi A, Nejat AH (2013) Dry socket following tooth extraction in an Iranian Dental Center: incidence and risk factors. J Dent Mater Tech 2(3):86–91

    Google Scholar 

  3. Turner CH, Forwood MR, Rho JY, Yoshikawa T (1994) Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res 9(1):87–97

    Article  CAS  PubMed  Google Scholar 

  4. Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37(4):411–417

    Article  CAS  PubMed  Google Scholar 

  5. Kooistra BW, Jain A, Hanson BP (2009) Electrical stimulation: nonunions. Indian J Orthop 43(2):149–155

    Article  PubMed  PubMed Central  Google Scholar 

  6. Adie S, Harris IA, Naylor JM, Rae H, Dao A, Yong S, Ying V (2011) Pulsed electromagnetic field stimulation for acute tibial shaft fractures: a multicenter, double-blind, randomized trial. J Bone Joint Surg Am 93(17):1569–1576

    Article  PubMed  Google Scholar 

  7. Hasuike A, Sato S, Udagawa A, Ando K, Arai Y, Ito K (2011) In vivo bone regenerative effect of low-intensity pulsed ultrasound in rat calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endodonto 111(1):12–20

    Article  Google Scholar 

  8. Fındık Y, Baykul T (2014) Effects of low-intensity pulsed ultrasound on autogenous bone graft healing. Oral Surg Oral Med Oral Pathol Oral Radiol 117(3):255–260

    Article  Google Scholar 

  9. El-Ghannam A (2005) Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices 2(1):87–101

    Article  PubMed  Google Scholar 

  10. McCarthy TL, Ji C, Centrella M (2000) Links among growth factors, hormones, and nuclear factors with essential roles in bone formation. Crit Rev Oral Biol Med 11(4):409–422

    Article  CAS  PubMed  Google Scholar 

  11. Kazancioglu HO, Ezirganli S, Aydin MS (2013) Effects of laser and ozone therapies on bone healing in the calvarial defects. Craniofac Surg 24(6):2141–2146

    Article  Google Scholar 

  12. Nagata MJ, Santinoni CS, Pola NM, de Campos N, Messora MR, Bomfim SR, Ervolino E, Fucini SE, Faleiros PL, Garcia VG, Bosco AF (2013) Bone marrow aspirate combined with low-level laser therapy: a new therapeutic approach to enhance bone healing. Photochem Photobiol B 121:6–14

    Article  CAS  Google Scholar 

  13. Walsh LJ (1997) The current status of low level laser therapy in dentistry. Part 1. Soft tissue applications. Aust Dent J 42(4):247–254

    Article  CAS  PubMed  Google Scholar 

  14. Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26(3):282–291

    Article  CAS  PubMed  Google Scholar 

  15. Park JJ, Kang KL (2012) Effect of 980-nm GaAlAs diode laser irradiation on healing of extraction sockets in streptozotocin-induced diabetic rats: a pilot study. Lasers Med Sci 27(1):223–230

    Article  PubMed  Google Scholar 

  16. Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2005) Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B Biol 81(2):98–106

    Article  CAS  Google Scholar 

  17. Brawn PR, Kwong-Hing A (2007) Histologic comparison of light emitting diode phototherapy-treated hydroxyapatite-grafted extraction sockets: a same-mouth case study. Implant Dent 16(2):204–211

    Article  PubMed  Google Scholar 

  18. Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, Barham CD, Waddell DL, Enwemeka S (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Meta-analysis. Photomed Laser Surg 22(3):241–247

    Article  PubMed  Google Scholar 

  19. Nunamaker DM (1998) Experimental models of fracture repair. Clin Orthop Relat Res 355:S56–S65

    Article  PubMed  Google Scholar 

  20. MacNeill SR, Cobb CM, Rapley JW, Glaros AG, Spencer P (1999) In vivo comparison of synthetic osseous graft materials. A preliminary study. J Clin Periodontol 26(4):239–245

    Article  CAS  PubMed  Google Scholar 

  21. Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 205:298–307

    Google Scholar 

  22. El-Maghraby EM, El-Rouby DH, Saafan AM (2013) Assessment of the effect of low-energy diode laser irradiation on gamma irradiated rats’ mandibles. Arch Oral Biol 58(7):796–805

    Article  PubMed  Google Scholar 

  23. Korany NS, Mehannia SS, Hakam HM, El-Maghraby EMF (2012) Evaluation of socket healing in irradiated rats after diode laser exposure (histological and morphometric studies). Arch Oral Biol 57(7):884–891

    Article  PubMed  Google Scholar 

  24. Garcia VG, da Conceição JM, Fernandes LA, de Almeida JM, Nagata MJ, Bosco AF, Theodoro LH (2013) Effects of LLLT in combination with bisphosphonate on bone healing in critical size defects: a histological and histometric study in rat calvaria. Lasers Med Sci 28(2):407–414

    Article  PubMed  Google Scholar 

  25. Nicola RA, Jorgetti Y, Rigau J, Pacheco MT, dos Reis LM, Zangaro RA (2003) Effect of low-power GaAlAs laser (660 nm) on bone structure and cell activity: an experimental animal study. Lasers Med Sci 18(2):89–94

    Article  PubMed  Google Scholar 

  26. Oron U, Yaakobi T, Oron A, Hayam G, Gepstein L, Rubin O, Wolf T, Ben Haim S (2001) Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Lasers Surg Med 28(3):204–211

    Article  CAS  PubMed  Google Scholar 

  27. Ayuk SM, Houreld NN, Abrahamse H (2012) Collagen production in diabetic wounded fibroblasts in response to low-intensity laser irradiation at 660 nm. Diabetes Technol Ther 14(12):1110–1117

    Article  CAS  PubMed  Google Scholar 

  28. Yaakobi T, Maltz L, Uoron U (1996) Promotion of bone repair in the cortical bone of the tibia in rats by low energy laser (He–Ne) irradiation. Calcif Tissue Int 59(4):297–300

    Article  CAS  PubMed  Google Scholar 

  29. Ribeiro DA, Matsumoto MA (2008) Low-level laser therapy improves bone repair in rats treated with anti-inflammatory drugs. J Oral Rehabil 35(12):925–933

    Article  CAS  PubMed  Google Scholar 

  30. Bliziotes M, Murtagh J, Wiren K (1996) Beta-adrenergic receptor kinase-like activity and beta-arrestin are expressed in osteoblastic cells. J Bone Miner Res 11(6):820–826

    Article  CAS  PubMed  Google Scholar 

  31. Petri AD, Teixeira LN, Crippa GE, Beloti MM, de Oliveira PT, Rosa AL (2010) Effects of low level laser therapy on human osteoblastic cells grown on titanium. Braz Dent J 21(6):491–498

    Article  PubMed  Google Scholar 

  32. Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts: an in vitro study. Lasers Med Sci 27(2):423–430

    Article  PubMed  Google Scholar 

  33. Saygun I, Nizam N, Ural AU, Serdar MA, Avcu F, Tozum TF (2012) Low-level laser irradiation affects the release of basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF-I), and receptor of IGF-I (IGFBP3) from osteoblasts. Photomed Laser Surg 30(3):149–154

    Article  CAS  PubMed  Google Scholar 

  34. Bouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 41(4):291–297

    Article  PubMed  Google Scholar 

  35. Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC, Yum LW (2001) The effects of low level laser irradiation on osteoblastic cells. Clin Orthod Res 4(1):3–14

    Article  PubMed  Google Scholar 

  36. Gordjestani M, Dermaut L, Thierens H (1994) Infrared laser and bone metabolism: a pilot study. Int J Oral Maxillofac Surg 23(1):54–56

    Article  CAS  PubMed  Google Scholar 

  37. Barbosa D, de Souza RA, Xavier M, da Silva FF, Arisawa EA, Villaverde AG (2013) Effects of low-level laser therapy (LLLT) on bone repair in rats: optical densitometry analysis. Lasers Med Sci 28(2):651–656

    Article  PubMed  Google Scholar 

  38. Guzzardella GA, Torricelli P, Nicoli Aldini N, Giardino R (2001) Laser technology in orthopedics: preliminary study on low power laser therapy to improve the bone-biomaterial interface. Int J Artif Organs 24(12):898–902

    CAS  PubMed  Google Scholar 

  39. Guzzardella GA, Fini M, Torricelli P, Giavaresi G, Giardino R (2002) Laser stimulation on bone defect healing: an in vitro study. Laser Med Sci 17(3):216–220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehab Ahmed Hamad.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests. All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamad, S.A., Naif, J.S. & Abdullah, M.A. Effect of Diode Laser on Healing of Tooth Extraction Socket: An Experimental Study in Rabbits. J. Maxillofac. Oral Surg. 15, 308–314 (2016). https://doi.org/10.1007/s12663-015-0842-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12663-015-0842-x

Keywords

Navigation