Skip to main content

Advertisement

Log in

Factors Influencing the Accuracy of Cephalometric Prediction of Soft Tissue Profile Changes Following Orthognathic Surgery

  • Review Paper
  • Published:
Journal of Maxillofacial and Oral Surgery Aims and scope Submit manuscript

Abstract

The cephalometric prediction of orthognathic treatment outcome is an important part of the surgical planning and the process of informed consent. The orthodontic and surgical changes must be described accurately prior to treatment in order to assess the treatment’s feasibility, to optimize case management and to increase patient’s understanding and acceptance of the recommended treatment. The aim of the present article was to investigate on the factors that could influence the accuracy of cephalometric prediction in planning orthognathic surgery. Review of the literature revealed that, besides factors directly related to the prediction method and its use, there exist a considerable number of factors which could affect significantly the accuracy of soft tissue response. These factors could be biological ones such as relapse, centre of mandibular rotation and individual variation in response to treatment and others such as gender, race, pre-operative soft tissue thickness and data bases for mean ratios of soft to hard tissue movement changes. Some of the factors affecting the accuracy of prediction of soft tissue response following orthognathic surgery are inevitable and there are others, difficult to control and predict. However, patients should be informed that predictions are only a guide, may not represent the actual result of the surgical outcome, and as such they should be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Proffit WR, Sarver DM (2003) Treatment planning: optimizing benefit to the patient. In: Proffit WR, White RP Jr, Sarver DM (eds) Contemporary treatment of dentofacial deformity. Mosby Inc, St Louis, pp 172–244

    Google Scholar 

  2. Cohen MI (1965) Mandibular prognathism. Am J Orthod 51:368–379

    Article  PubMed  CAS  Google Scholar 

  3. McNeill RW, Proffit WR, White RP (1972) Cephalometric prediction for orthodontic surgery. Angle Orthod 42:154–164

    PubMed  CAS  Google Scholar 

  4. Henderson D (1974) The assessment and management of bony deformities of the middle and lower face. Br J Plast Surg 66:378–396

    Google Scholar 

  5. Worms FW, Isaacson RJ, Spiedel TM (1976) Surgical orthodontic treatment planning: Profile analysis and mandibular surgery. Angle Orthod 46:1–25

    PubMed  CAS  Google Scholar 

  6. Hohl TH, Wolford LM, Epker BN, Fonseca RJ (1978) Craniofacial osteotomies: a photocephalometric technique for the prediction and evaluation of tissue changes. Angle Orthod 48:114–125

    Google Scholar 

  7. Fish LC, Epker BN (1980) Surgical-orthodontic cephalometric prediction tracing. J Clin Orthod 14:36–52

    PubMed  CAS  Google Scholar 

  8. Moshiri F, Jung ST, Sclaroff A, Marsh JL, Gay DW (1982) Orthognathic and craniofacial surgical diagnosis and treatment planning: a visual approach. J Clin Orthod 16:37–59

    PubMed  CAS  Google Scholar 

  9. Wolford LM, Hilliard FW, Dugan DJ (1985) Surgical treatment objective. A systematic approach to the prediction Tracing. Mosby Year Book, St Louis, pp 54–74

    Google Scholar 

  10. Proffit WR (1991) Treatment planning: the search for wisdom. In: Proffit WR, White RP (eds) Surgical orthodontic treatment. Mosby Year Book, St Louis, pp 142–191

    Google Scholar 

  11. Hu J, Wang D, Luo S, Chen Y (1999) Differences in soft tissue profile changes following mandibular setback in chinese men and women. J Oral Maxillofac Surg 57:1182–1186

    Article  PubMed  CAS  Google Scholar 

  12. Mobarak KA, Krogstad O, Espeland L, Lyberg T (2001) Factors influencing the predictability of soft tissue profile changes following mandibular setback surgery. Angle Orthod 71:216–227

    PubMed  CAS  Google Scholar 

  13. Clemente-Panichella D, Suzuki S, Cisneros GJ (2000) Soft to hard tissue movement ratios: Orthognathic surgery in a Hispanic population. Int J Adult Orthod Orthognath Surg 15:255–264

    CAS  Google Scholar 

  14. Koh CH, Chew MT (2004) Predictability of soft tissue profile changes following bimaxillary surgery in skeletal Class III Chinese patients. J Oral Maxillofac Surg 62:1505–1509

    Article  PubMed  Google Scholar 

  15. Betts NJ, Fonseca RJ (1992) Soft tissue changes associated with orthognathic surgery. In: Bell WH (ed) Modern practice in orthognathic and reconstructive surgery, vol 3. Saunders, Philadelphia, pp 2184–2196

    Google Scholar 

  16. Gjørup H, Athanasiou AE (1991) Soft tissue and dentoskeletal profile changes associated with mandibular setback osteotomy. Am J Orthod Dentofac Orthop 100:312–323

    Article  Google Scholar 

  17. Chunmaneechote P, Friede H (1999) Mandibular setback osteotomy: facial soft tissue behaviour and possibility to improve the accuracy of the soft tissue profile prediction with the use of a computerized cephalometric program: Quick Ceph Image Pro: v.2.5. Clin Orth Res 2:85–98

    CAS  Google Scholar 

  18. Lew KK (1992) The reliability of computerized cephalometric soft tissue prediction following bimaxillary anterior subapical osteotomy. Int J Adult Orthod Orthognath Surg 7:97–101

    CAS  Google Scholar 

  19. Kaipatur NR, Flores-Mir C (2009) Accuracy of computer programs in predicting orthognathic surgery soft tissue response. J Oral Maxillofac Surg 67:751–759

    Article  PubMed  Google Scholar 

  20. Pospisil OA (1987) Reliability and feasibility of prediction tracing in orthognathic surgery. J Craniomaxillofac Surg 15:79–83

    Article  PubMed  CAS  Google Scholar 

  21. Aharon PA, Eisig S, Cisneros GJ (1997) Surgical prediction reliability: a comparison of two computer software systems. Int J Adult Orthod Orthognath Surg 12:65–78

    CAS  Google Scholar 

  22. Trpkova B, Major P, Prasad N, Nebbe B (1997) Cephalometric landmarks identification and reproducibility: A Meta analysis. Am J Orthod Dentofac Orthop 112:165–170

    Article  CAS  Google Scholar 

  23. Athanasiou AE, Kragskov J (1995) Computerized Cephalometric Systems. In: Athanasiou AE (ed) Orthodontic Cephalometry, chap 12. Mosby-Wolfe, London, pp 231–239

    Google Scholar 

  24. Baumrind S (1991) Prediction in the Planning and Conduct of Orthodontic Treatment. In: Melsen B (eds) Current controversies in orthodontics, chap 2. Quintessence Publishing Co, Inc, Chicago, pp 25–43

    Google Scholar 

  25. Proffit WR, Turvey TA, Phillips C (1996) Orthognathic surgery: a hierarchy of stability. Int J Adult Orthod Orthognath Surg 11:191–204

    CAS  Google Scholar 

  26. Bailey LJ, Cevidanes LHS, Proffit WR (2004) Stability and predictability of orthognathic surgery. Am J Orthod Dentofac Orthop 126:273–277

    Article  Google Scholar 

  27. Proffit WR, Turvey TA, Phillips C (2007) The hierarchy of stability and predictability in orthognathic surgery with rigid fixation: an update and extension. Head Face Med 3:21

    Article  PubMed  Google Scholar 

  28. Semaan S, Goonewardene M (2005) Accuracy of a LeFort I maxillary osteotomy. Angle Orthod 75:964–973

    PubMed  Google Scholar 

  29. Worms FW, Speidel MT, Bevis RR, Waite DE (1980). Posttreatment stability and esthetics of orthognathic surgery. Angle Orthod 50:251–273

    PubMed  CAS  Google Scholar 

  30. Fish LC, Epker BN (1986) Prevention of relapse of surgical-orthodontic treatment. Part 1. Mandibular procedures. J Clin Orthod 20:826–841

    PubMed  CAS  Google Scholar 

  31. Bouwman JP, Kerstens HC, Tuinzing DB (1994) Condylar resorption in orthognathic surgery: the role of intermaxillary fixation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 78:138–141

    CAS  Google Scholar 

  32. White CS, Dolwick MF (1992) Prevalence and variance of temporomandibular dysfunction in orthognathic surgery patients. Int J Adult Orthod Orthognath Surg 7:7–14

    CAS  Google Scholar 

  33. Proffit WR, Phillips C, Turvey TA (1987) Stability following superior repositioning of the maxilla by LeFort I osteotomy. Am J Orthod Dentofac Orthop 92:151–161

    Article  CAS  Google Scholar 

  34. Rondahl US, Bystedt H, Enqust B, Malmgren O (1988) Changes after correction of maxillary retrusion by LeFort I osteotomy. Int J Oral Maxillofac Surg 17:165–169

    Article  PubMed  CAS  Google Scholar 

  35. Egbert M, Hepworth B, Myall R, West R (1995) Stability of Le Fort I osteotomy with maxillary advancement: a comparison of combined wire fixation and rigid fixation. J Oral Maxillofac Surg 53:243–248

    Article  PubMed  CAS  Google Scholar 

  36. Tornes K, Wisth PJ (1988) Stability after vertical subcondylar ramus osteotomy for correction of mandibular prognathism. Int J Oral Maxillofac Surg 17:242–248

    Article  PubMed  CAS  Google Scholar 

  37. Ahlen K, Rosenquist J (1990) Anterior skeletal fixation as an adjunct to oblique sliding osteotomy of the mandibular ramus. A cephalometric study. J Craniomaxillofac Surg 18:147–150

    Article  PubMed  CAS  Google Scholar 

  38. Ritzau M, Wenzel A, Williams S (1989) Changes in condylar position after bilateral vertical ramus osteotomy with or without osteosynthesis. Am J Orthod Dentofac Orthop 96:507–513

    Article  CAS  Google Scholar 

  39. Athanasiou AE, Mavreas D, Toutounzakis N, Ritzau M (1992) Skeletal stability after surgical correction of mandibular prognathism by vertical ramus osteotomy. Eur J Orthod 14:117–124

    PubMed  CAS  Google Scholar 

  40. Proffit WR, Phillips C (2003) Physiologic responses to treatment and postsurgical stability. In: Proffit WR, White RP Jr, Sarver DM (eds) Contemporary treatment of dentofacial deformity. Mosby Inc, St Louis, pp 646–676

    Google Scholar 

  41. Tucker MR, Schardt-Sacco DS, White RP (2003) Principles of surgical management of dentofacial deformity. In: Proffit WR, White RP Jr, Sarver DM (eds) Contemporary treatment of dentofacial deformity. Mosby Inc, St Louis, pp 270–287

    Google Scholar 

  42. Thompson JR (1946) The rest position of the mandible and its significance to dental science. J Am Dent Assoc 33:151–180

    PubMed  CAS  Google Scholar 

  43. Craddock FW (1948) The muscles of mastication and mandibular movements. N Z Dent J 44:233–239

    Google Scholar 

  44. Grant PG (1973) Biomechanical significance of the instantaneous center of rotation: the human temporomandibular joint. J Biomech 6:109–113

    Article  PubMed  CAS  Google Scholar 

  45. Schendel SA, Eisenfeld JH, Bell WH, Epker BN (1976) Superior repositioning of the maxilla: Stability and soft tissue osseous relations. Am J Orthod 70:663–674

    Article  PubMed  CAS  Google Scholar 

  46. Fish LC, Epker BN (1980) Surgical superior repositioning of the maxilla: what to do with the mandible? Am J Orthod 78:164–191

    Article  PubMed  Google Scholar 

  47. Valinoti JR (1977) The hinge-axis angle. J Clin Orthod 9:551–559

    Google Scholar 

  48. Brewka RE (1981) Pantographic evaluation of cephalometric hinge axis. Am J Orthod 79:1–19

    Article  PubMed  CAS  Google Scholar 

  49. Hall RE (1929) An analysis of the work and ideas of investigators and authors of relation and movement of the mandible. J Am Dent Assoc 16:1642–1693

    Google Scholar 

  50. Nevakari K (1956) An analysis of the mandibular movement for rest to occlusal position. Acta Odontol Scand 14(Suppl 19):9–129

    Google Scholar 

  51. Sperry TP, Steinberg MJ, Gans BJ (1982) Mandibular movement during autorotation as a result of maxillary impaction surgery. Am J Orthod 81:116–123

    Article  PubMed  CAS  Google Scholar 

  52. Rekow ED, Speidel TM, Koenig RA (1993) Location of the mandibular center of autorotation in maxillary impaction surgery. Am J Orthod Dentofac Orthop 103:530–536

    Article  CAS  Google Scholar 

  53. Nattestad A, Vedtofte P (1992) Mandibular autorotation in orthognathic surgery: a new method of locating the centre of mandibular rotation and determining its consequence in orthognathic surgery. J Craniomaxillofac Surg 20:163–170

    Article  PubMed  CAS  Google Scholar 

  54. Nattestad A, Vedtofte P, Mosekilde E (1991) The significance of an erroneous recording of the centre of mandibular rotation in orthognathic surgery. J Craniomaxillofac Surg 19:254–259

    Article  PubMed  CAS  Google Scholar 

  55. Proffit WR, White RP Jr (1990) Who needs surgical-orthodontic treatment? Int J Adult Orthod Orthognath Surg 5:81–89

    CAS  Google Scholar 

  56. Bryan DC, Hunt NP (1993) Surgical accuracy in orthognathic surgery. Br J Oral Maxillofac Surg 31:343–350

    Article  PubMed  CAS  Google Scholar 

  57. Kolokitha OE, Athanasiou AE, Tuncay O (1996) Validity of computerized predictions of dentoskeletal and soft tissue profile changes after mandibular setback and maxillary impaction osteotomies. Int J Adult Orthod Orthognath Surg 11:137–154

    CAS  Google Scholar 

  58. Engel GA, Quan RE, Chaconas ST (1979) Soft-tissue change as a result of maxillary surgery. A preliminary study. Am J Orthod 75:291–300

    Article  PubMed  CAS  Google Scholar 

  59. Freihofer HP (1984) Latitude and limitation of midface movements. Br J Oral Maxillofac Surg 22:393–413

    Article  PubMed  CAS  Google Scholar 

  60. Friede H, Kahnberg KE, Adell R, Ridell A (1987) Accuracy of cephalometric prediction in orthognathic surgery. J Oral Maxillofac Surg 45:754–760

    Article  PubMed  CAS  Google Scholar 

  61. Hing NR (1989) The accuracy of computer generated prediction tracings. Int J Oral Maxillofac Surg 18:148–151

    Article  PubMed  CAS  Google Scholar 

  62. Donatsky O, Hillerup S, Bjørn-Jørgensen J, Jacobsen PU (1992) Computerized cephalometric orthognathic surgical simulation, prediction and postoperative evaluation of precision. Int J Adult Orthod Orthognath Surg 21:199–203

    CAS  Google Scholar 

  63. Eales EA, Newton C, Jones ML, Sugar A (1994) The accuracy of computerized prediction of the soft tissue profile: a study of 25 patients treated by means of the Le Fort I osteotomy. Int J Adult Orthod Orthognath Surg 9:141–152

    CAS  Google Scholar 

  64. Eales EA, Jones ML, Newton C, Sugar AW (1995) A study of the accuracy of predicted soft tissue changes produced by a computer software package (COG 3.4) in a series of patients treated by the Le Fort I osteotomy. Br J Oral Maxillofac Surg 33:362–369

    Article  PubMed  CAS  Google Scholar 

  65. Konstiantos KA, O’Reilly MT, Close J (1994) The validity of the prediction of soft tissue profile changes after LeFort I osteotomy using the dentofacial planner (computer software). Am J Orthod Dentofac Orthop 105:241–249

    Article  CAS  Google Scholar 

  66. Nimkarn Y, Miles PG (1995) Reliability of computer-generated cephalometrcis. Int J Adult Orthod Orthognath Surg 10:43–52

    CAS  Google Scholar 

  67. Sinclair PM, Kilpelainen P, Phillips C, White RP Jr, Rogers L, Sarver DM (1995) The accuracy of video imaging in orthognathic surgery. Am J Orthod Dentofac Orthop 107:177–185

    Article  CAS  Google Scholar 

  68. Gerbo LR, Poulton DR, Covell DA, Russell CA (1997) A comparison of a computer-based orthognathic surgery prediction system to post-surgical results. Int J Adult Orthod Orthognath Surg 12:55–63

    CAS  Google Scholar 

  69. Sameshima GT, Kawakami RK, Kaminishi RM, Sinclair PM (1997) Predicting soft tissue changes in maxillary impaction surgery: a comparison of two video imaging systems. Angle Orthod 67:347–354

    PubMed  CAS  Google Scholar 

  70. Csaszar GR, Brüker-Csaszar B, Niederdellmann H (1999) Prediction of soft tissue profiles in orthodontic surgery with the Dentofacial Planner. Int J Adult Orthod Orthognath Surg 14:285–290

    CAS  Google Scholar 

  71. Mankad B, Cisneros GJ, Freeman K, Eisig SB (1999) Prediction accuracy of soft tissue profile in orthognathic surgery. Int J Adult Orthod Orthognath Surg 14:19–26

    CAS  Google Scholar 

  72. Curtis TJ, Casko JS, Jakobsen JR, Southard TE (2000) Accuracy of a computerized method of predicting soft-tissue changes from orthognathic surgery. J Clin Orthod 34:524–530

    PubMed  CAS  Google Scholar 

  73. Loh S, Heng JK, Ward-Booth P, Winchester L, McDonald F (2001) A radiographic analysis of computer prediction in conjunction with orthognathic surgery. Int J Oral Maxillofac Surg 30:259–263

    Article  PubMed  CAS  Google Scholar 

  74. Jacobson R, Sarver DM (2001) The predictability of maxillary repositioning in LeFort I orthognathic surgery. Am J Orthod Dentofac Orthop 122:142–154

    Article  Google Scholar 

  75. Gossett CB, Preston CB, Dunford R, Lampasso J (2005) Prediction accuracy of computer-assisted surgical visual treatment objectives as compared with conventional visual treatment objectives. J Oral Maxillofac Surg 63:609–617

    Article  PubMed  Google Scholar 

  76. Power G, Breckon J, Sherriff M, McDonald F (2005) Dolphin Imaging Software: an analysis of the accuracy of cephalometric digitization and orthognathic prediction. Int J Oral Maxillofac Surg 34:619–626

    Article  PubMed  CAS  Google Scholar 

  77. Jones RM, Khambay BS, McHugh S, Ayoub AF (2007) The validity of a computer-assisted simulation system for orthognathic surgery (CASSOS) for planning the surgical correction of class III skeletal deformities: single-jaw versus bimaxillary surgery. Int J Oral Maxillofac Surg 36:900–908

    Article  PubMed  CAS  Google Scholar 

  78. Donatsky O, Bjørn-Jørgensen J, Hermund NU, Nielsen H, Holmqvist-Larsen M, Nerder PH (2010) Immediate postoperative outcome of orthognathic surgical planning, and prediction of positional changes in hard and soft tissue, independently of the extent and direction of the surgical corrections required. Br J Oral Maxillofac Surg 49:386–391

    Google Scholar 

  79. Kolokitha OE (2007) Validity of a manual soft tissue profile prediction method following mandibular setback osteotomy. Eur J Dent 1:202–211

    PubMed  Google Scholar 

  80. Schendel SA, Carlotti AE (1991) Nasal consideration in orthognathic surgery. Am J Orthod Dentofac Orthop 100:197–208

    Article  CAS  Google Scholar 

  81. Papadopoulos MA, Christou PK, Athanasiou AE, Boettcher P, Zeilhofer HF, Sader R, Papadopoulos NA (2002) Three-dimensional craniofacial reconstruction imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:382–393

    Article  PubMed  Google Scholar 

  82. Bianchi A, Muyldermans L, Di Martino M, Landellotti L, Amadori S, Sarti A, Marchetti C (2010) Facial soft tissue esthetic predictions: validation in craniomaxillofacial surgery with cone beam computed tomography. J Oral Maxillofac Surg 68:1471–1479

    Article  PubMed  Google Scholar 

  83. Kusnoto B (2007) Two-dimensional cephalometry and computerized orthognathic surgical treatment planning. Clin Plast Surg 34:417–426

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga-Elpis Kolokitha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolokitha, OE., Chatzistavrou, E. Factors Influencing the Accuracy of Cephalometric Prediction of Soft Tissue Profile Changes Following Orthognathic Surgery. J. Maxillofac. Oral Surg. 11, 82–90 (2012). https://doi.org/10.1007/s12663-011-0253-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12663-011-0253-6

Keywords

Navigation