Skip to main content
Log in

MDDC: melanoma detection using discrete wavelet transform and convolutional neural network

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Detection of melanoma in the early stage can provide the patients with more promising treatments. Numerous methods have been proposed for detecting melanoma using computational approaches; however, the application of deep learning in this field is incipient and needs to be assessed further. In this paper, we introduce MDDC, a four-step deep learning-based pipeline for melanoma detection using digital images. MDDC removes image noise using discrete wavelet transform, pre-processes and extends the generalizability using a Gaussian blur filter and image transformation techniques, and finally computes the probability of melanoma in digital images using a convolutional neural network. The model performance is evaluated by considering various CNN architectures and three validation scenarios to find the best CNN architecture. Moreover, we used the transfer learning technique to improve the model performance and generalize it for working on another dataset. MDDC can handle noisy images and is insensitive to image transformations. The validation of MDDC led to 0.96 Accuracy, 0.96 Recall, 0.954 Specificity, 0.99 AUC, and 0.99 AUPR. In addition, further evaluation of the proposed method with state-of-the-art methods verifies that MDDC outperforms other methods. Consequently, MDDC can efficiently and quickly detect melanoma in digital images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code availability

The codes and implementations are available at https://github.com/Omid-Asadi/MelanomaDetection.

References

  • Adegun AA, Viriri S (2019) Deep learning-based system for automatic melanoma detection. IEEE Access 8:7160–7172

    Article  Google Scholar 

  • Balaji M, Saravanan S, Chandrasekar M, Rajkumar G, Kamalraj S (2021) Analysis of basic neural network types for automated skin cancer classification using firefly optimization method. J Ambient Intell Hum Comput 12(7):7181–7194

    Article  Google Scholar 

  • Banerjee S, Singh S, Chakraborty A, Das A, Bag R (2020) Melanoma diagnosis using deep learning and fuzzy logic. Diagnostics 10(8):577

    Article  Google Scholar 

  • Bisla D, Choromanska A, Berman RS, Stein JA, Polsky D (2019) Towards automated melanoma detection with deep learning: Data purification and augmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages 0–0

  • Bojarski M, Choromanska A, Choromanski K, Firner B, Jackel L, Muller U, Zieba K (2016) Visualbackprop: visualizing cnns for autonomous driving. arXiv preprint arXiv:1611.05418

  • Chang X, Nie F, Wang S, Yang Y, Zhou X, Zhang C (2015) Compound rank-k projections for bilinear analysis. IEEE Trans Neural Netw Learn Syst 27(7):1502–1513

    Article  MathSciNet  Google Scholar 

  • Chen K, Yao L, Zhang D, Wang X, Chang X, Nie F (2019) A semisupervised recurrent convolutional attention model for human activity recognition. IEEE Trans Neural Netw Learn Syst 31(5):1747–1756

    Article  Google Scholar 

  • Dhivyaa C, Sangeetha K, Balamurugan M, Amaran S, Vetriselvi T, Johnpaul P (2020) Skin lesion classification using decision trees and random forest algorithms. J Ambient Intell Hum Comput, pp 1–13

  • Dridi S, Morestin F, Dogui A (2012) Use of digital image correlation to analyse the shearing deformation in woven fabric. Exp Tech 36(5):46–52

    Article  Google Scholar 

  • Glaister JL (2013) Automatic segmentation of skin lesions from dermatological photographs. Master’s thesis, University of Waterloo

  • Hameed A, Umer M, Hafeez U, Mustafa H, Sohaib A, Siddique MA, Madni HA (2021) Skin lesion classification in dermoscopic images using stacked convolutional neural network. J Ambient Intell Hum Comput pp 1–15

  • Jayapriya K, Jacob IJ (2020) Hybrid fully convolutional networks-based skin lesion segmentation and melanoma detection using deep feature. Int J Imaging Syst Technol 30(2):348–357

    Article  Google Scholar 

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • Li Y, Shen L (2018) Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18(2):556

    Article  Google Scholar 

  • Li Z, Nie F, Chang X, Nie L, Zhang H, Yang Y (2018) Rank-constrained spectral clustering with flexible embedding. IEEE Trans Neural Netw Learn Syst 29(12):6073–6082

    Article  MathSciNet  Google Scholar 

  • Li Z, Nie F, Chang X, Yang Y, Zhang C, Sebe N (2018) Dynamic affinity graph construction for spectral clustering using multiple features. IEEE Trans Neural Netw Learn Syst 29(12):6323–6332

    Article  MathSciNet  Google Scholar 

  • Li Z, Yao L, Chang X, Zhan K, Sun J, Zhang H (2019) Zero-shot event detection via event-adaptive concept relevance mining. Pattern Recogn 88:595–603

    Article  Google Scholar 

  • Luo M, Chang X, Nie L, Yang Y, Hauptmann AG, Zheng Q (2017) An adaptive semisupervised feature analysis for video semantic recognition. IEEE Trans Cybern 48(2):648–660

    Article  Google Scholar 

  • Mahbod A, Schaefer G, Ellinger I, Ecker R, Pitiot A, Wang C (2019) Fusing fine-tuned deep features for skin lesion classification. Comput Med Imaging Graph 71:19–29

    Article  Google Scholar 

  • Mahbod A, Schaefer G, Wang C, Ecker R, Ellinge I (2019b) Skin lesion classification using hybrid deep neural networks. In ICASSP 2019 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1229–1233. IEEE

  • Majtner T, YildirimYayilgan S, Hardeberg JY (2019) Optimised deep learning features for improved melanoma detection. Multimed Tools Appl 78(9):11883–11903

    Article  Google Scholar 

  • Marchetti M, Codella NC, Dusza SW, Gutman DA, Helba B, Kalloo A, Mishra N, Carrera C, Celebi M, DeFazio JL et al (2018) Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J Am Acad Dermatol 78(2):270–277

    Article  Google Scholar 

  • Miller K, GodingSauer A, Ortiz A, Fedewa S, Pinheiro P, Tortolero-Luna G, Martinez-Tyson D, Jemal A, Siegel R (2018) Cancer statistics for hispanics/latinos, 2018. CA Cancer J Clin 68(6):425–445

    Article  Google Scholar 

  • Milton MA (2019) Automated skin lesion classification using ensemble of deep neural networks in isic 2018: Skin lesion analysis towards melanoma detection challenge. arXiv preprint arXiv:1901.10802

  • Naeem A, Farooq MS, Khelifi A, Abid A (2020) Malignant melanoma classification using deep learning: datasets, performance measurements, c.hallenges and opportunities. IEEE Access 8:110575–110597

    Article  Google Scholar 

  • Nami N, Giannini E, Burroni M, Fimiani M, Rubegni P (2012) Teledermatology: state-of-the-art and future perspectives. Expert Rev Dermatol 7(1):1–3

    Article  Google Scholar 

  • NasrEsfahani E, Samavi S, Karimi N, Soroushmehr SM, Jafari M, Ward K, Najarian K (2016) Melanoma detection by analysis of clinical images using convolutional neural network. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 1373–1376, IEEE

  • Novikov I, Novikov I, Novikov I, Protasov V, Protasov V, Protasov V, Skopina M, Skopina M (2011) Wavelet theory, volume 239. American Mathematical Soc

  • Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434

  • Rotemberg V, Kurtansky N, BetzStablein B, Caffery L, Chousakos E, Codella N, Combalia M, Dusza S, Guitera P, Gutman D et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci Data 8(1):1–8

    Google Scholar 

  • Salido JA, Ruiz C (2018) Using deep learning to detect melanoma in dermoscopy images. Int J Mach Learn Comput 8(1):61–68

    Article  Google Scholar 

  • SchmidSaugeona P, Guillodb J, Thirana J (2003) Towards a computer-aided diagnosis system for pigmented skin lesions. Comput Med Imaging Graph 27(1):65–78

    Article  Google Scholar 

  • Soudani A, Barhoumi W (2019) An image-based segmentation recommender using crowdsourcing and transfer learning for skin lesion extraction. Expert Syst Appl 118:400–410

    Article  Google Scholar 

  • Sreelatha T, Subramanyam, Prasad M (2019) Early detection of skin cancer using melanoma segmentation technique. J Med Syst 43(7):1–7

    Article  Google Scholar 

  • Yan C, Chang X, Luo M, Zheng Q, Zhang X, Li Z, Nie F (2020) Self-weighted robust lda for multiclass classification with edge classes. ACM Trans Intell Syst Technol (TIST) 12(1):1–19

    Google Scholar 

  • Zhang D, Yao L, Chen K, Wang S, Chang X, Liu Y (2019) Making sense of spatio-temporal preserving representations for eeg-based human intention recognition. IEEE Trans Cybern 50(7):3033–3044

    Article  Google Scholar 

  • Zhou R, Chang X, Shi L, Shen Y, Yang Y, Nie F (2019) Person reidentification via multi-feature fusion with adaptive graph learning. IEEE Trans Neural Netw Learn Syst 31(5):1592–1601

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Manthouri.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 52 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, O., Yekkalam, A. & Manthouri, M. MDDC: melanoma detection using discrete wavelet transform and convolutional neural network. J Ambient Intell Human Comput 14, 12959–12966 (2023). https://doi.org/10.1007/s12652-022-04381-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-022-04381-z

Keywords

Navigation