Skip to main content
Log in

An accurate car counting in aerial images based on convolutional neural networks

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

This paper proposes a simple and effective single-shot detector model to detect and count cars in aerial images. The proposed model, called heatmap learner convolutional neural network (HLCNN), is used to predict the heatmap of target car instances. In order to learn the heatmap of the target cars, we have improved CNN architecture by adding three convolutional layers as adaptation layers instead of fully connected layers. The VGG-16 has been used as a backbone convolutional neural network in the proposed model. The proposed method successfully determines the number of cars and precisely detects the center of target cars. Experiments on the two different car datasets (PUCPR+ and CARPK) show the state-of-the-art counting and localizing performance of the proposed method in comparison with existing methods. Also, experiments have been conducted to examine the effect of data augmentation and batch normalization on the success of the proposed method. The code and data will be made available here [https://www.github.com/ekilic/Heatmap-Learner-CNN-for-Object-Counting].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aich S, Stavness I (2018a) Object counting with small datasets of large images. arXiv preprint arXiv:1805.11123

  • Aich S, Stavness I (2018b) Improving object counting with heatmap regulation. arXiv preprint arXiv:1803.05494

  • Ammar A, Koubaa A, Ahmed M, Saad A (2019) Aerial images processing for car detection using convolutional neural networks: comparison between faster R-CNN and yolov3. arXiv preprint arXiv:1910.07234

  • Arteta C, Lempitsky V, Alison NJ, Zisserman A (2014) Interactive object counting. In: David F, Tomas P, Bernt S, Tinne T (eds) Computer vision-ECCV. Springer International Publishing, Berlin

    Google Scholar 

  • Cai Y, Du D, Zhang L, Wen L, Wang W, Wu Y, Lyu S (2019) Guided attention network for object detection and counting on drones. arXiv preprint arXiv:1909.11307

  • Cazzato D, Claudio C, Jose Luis S-L, Holger V, Marco L (2020) A survey of computer vision methods for 2d object detection from unmanned aerial vehicles. J Imaging 6(8):78

    Article  Google Scholar 

  • Chan AB, Liang Z-SJ, Vasconcelos N (2008) Privacy preserving crowd monitoring: counting people without people models or tracking. IEEE Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/cvpr.2008.4587569

    Article  Google Scholar 

  • Chen K, Gong S, Xiang T, Loy CC (2013) Cumulative attribute space for age and crowd density estimation. In: 2013 IEEE conference on computer vision and pattern recognition CVPR

  • Chen H, Libao Z, Jie M, Jue Z (2019) Target heat-map network: an end-to-end deep network for target detection in remote sensing images. Neurocomputing 331:375–387. https://doi.org/10.1016/j.neucom.2018.11.044

    Article  Google Scholar 

  • Chen K, Loy CC, Gong S, Xiang T (2012) Feature mining for localised crowd counting. In: British machine vision conference BMVC12

  • Chen W, Qiao Y, Li Y (2020) Inception-SSD: an improved single shot detector for vehicle detection. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-02085-w

    Article  Google Scholar 

  • Chu X, Yang W, Ouyang W, Ma C, Yuille AL, Wang X (2017) Multi-context attention for human pose estimation. IEEE Conf Comput Vis Pattern Recognit (CVPR). https://doi.org/10.1109/cvpr.2017.601

    Article  Google Scholar 

  • Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: 2009 2013 IEEE conference on computer vision and pattern recognition CVPR09

  • Di Mauro D, Furnari A, Patanè G, Battiato S, Farinella GM (2019) Estimating the occupancy status of parking areas by counting cars and non-empty stalls. J Vis Commun Image Represent 62:234–244. https://doi.org/10.1016/j.jvcir.2019.05.015

    Article  Google Scholar 

  • dos Santos de Arruda M, Lucas PO, Plabiany RA, Diogo NG, José MJ, Ana P, Marques R, Matsubara ET, Zhipeng L, Jonathan L, Jonathan de Andrade S, Wesley NG (2021) Counting and locating high-density objects using convolutional neural network. arXiv preprint arXiv:2102.04366

  • Fan Z, Jiewei L, Gong M, Xie H, Goodman ED (2018) Automatic tobacco plant detection in UAV images via deep neural networks. IEEE J Sel Top Appl Earth Observ Remote Sens 11(3):876–887. https://doi.org/10.1109/jstars.2018.2793849

    Article  Google Scholar 

  • Fiaschi L, Nair R, Köthe U, Hamprecht FA (2012) Learning to count with regression forest and structured labels. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012), pp 2685–2688. ISBN 978-1-4673-2216-4

  • Girshick RB (2015) Fast R-CNN. arXiv preprint arXiv:1504.08083

  • Goldman E, Herzig R, Eisenschtat A, Ratzon O, Levi I, Goldberger J, Hassner T (2019) Precise detection in densely packed scenes. arXiv preprint arXiv:1904.00853

  • Hsieh M-R, Lin Y-L, Hsu WH (2017) Drone-based object counting by spatially regularized regional proposal network. arXiv preprint arXiv:1707.05972

  • Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167

  • Kang D, Ma Z, Chen AB (2019) Beyond counting: Comparisons of density maps for crowd analysis tasks-counting, detection, and tracking. IEEE Trans Circuits Syst Video Technol 29(5):1408–1422 (ISSN 1558-2205)

    Article  Google Scholar 

  • Kilic E, Ozturk S (2019) A subclass supported convolutional neural network for object detection and localization in remote-sensing images. Int J Remote Sens 40(11):4193–4212. https://doi.org/10.1080/01431161.2018.1562260

    Article  Google Scholar 

  • Law H, Deng J (2018) Cornernet: detecting objects as paired keypoints. In: Proceedings of the European conference on computer vision (ECCV), 2018, pp. 734–750

  • Lempitsky V, Zisserman A (2010) Learning to count objects in images. In: Lafferty JD, Williams CKI, Shawe-Taylor J, Zemel RS, Culotta A (eds) Advances in neural information processing systems, vol 28. Curran Associates Inc., London, pp 1324–1332

    Google Scholar 

  • Li W, Li H, Wu Q, Chen X, Ngan KN (2019) Simultaneously detecting and counting dense vehicles from drone images. IEEE Trans Ind Electron 66(12):9651–9662. https://doi.org/10.1109/tie.2019.2899548

    Article  Google Scholar 

  • Lin T-Y, Goyal P, Girshick RB, He K, Dollár P (2017) Focal loss for dense object detection. arXiv preprint arXiv:1708.02002

  • Lin T-Y, Goyal P, Girshick R, He K, Dollar P (2018) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/tpami.2018.2858826

    Article  Google Scholar 

  • Liu W, Anguelov D, Erhan D, Szegedy C, Reed SE, Fu C-Y, Berg AC (2016) SSD: single shot multibox detector. In: Computer vision – ECCV 2016. ECCV 2016. Lecture notes in computer science, vol 9905. Springer, Cham. https://doi.org/10.1007/978-3-319-46448-0_2

  • Mundhenk NT, Konjevod G, Sakla WA, Boakye K (2016) A large contextual dataset for classification, detection and counting of cars with deep learning. In: Computer vision – ECCV 2016. ECCV 2016. Lecture notes in computer science, vol 9907. Springer, Cham. https://doi.org/10.1007/978-3-319-46487-9_48

  • Neupane B, Horanont T, Hung ND (2019) Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV). PLOS One 14(10):e0223906. https://doi.org/10.1371/journal.pone.0223906

    Article  Google Scholar 

  • Nogueira V, Oliveira H, Augusto Silva J, Vieira T, Oliveira K (2019) Retailnet: a deep learning approach for people counting and hot spots detection in retail stores. In: 2019 32nd SIBGRAPI conference on graphics, patterns and images (SIBGRAPI). https://doi.org/10.1109/sibgrapi.2019.00029

  • Oquab M, Bottou L, Laptev I, Sivic J (2015) Is object localization for free? Weakly-supervised learning with convolutional neural networks. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 685–694

  • Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A (2019) Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst 32:8026–37

    Google Scholar 

  • Pfister T, Charles J, Zisserman A (2015) Flowing ConvNets for human pose estimation in videos. IEEE Int Conf Comput Vis (ICCV). https://doi.org/10.1109/iccv.2015.222

    Article  Google Scholar 

  • Razakarivony S, Jurie F (2016) Vehicle detection in aerial imagery: a small target detection benchmark. J Vis Commun Image Represent 34:187–203. https://doi.org/10.1016/j.jvcir.2015.11.002

    Article  Google Scholar 

  • Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. IEEE Conf Comput Vis Pattern Recogni (CVPR). https://doi.org/10.1109/cvpr.2016.91

    Article  Google Scholar 

  • Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767

  • Ren S, He K, Irshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with region proposal networks. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing systems, vol 28. Curran Associates Inc., London, pp 91–99

    Google Scholar 

  • Revathi T, Rajalaxmi TM (2019) Deep learning for people counting model. Adv Intell Syst Comput. https://doi.org/10.1007/978-981-15-0035-043

    Article  Google Scholar 

  • Saribas H, Hakan C, Sinem K (2018) Car detection in images taken from unmanned aerial vehicles. Signal Process Commun Appl Conf (SIU). https://doi.org/10.1109/siu.2018.8404201

    Article  Google Scholar 

  • Sarwar F, Griffin A, Periasamy P, Portas K, Law J (2018) Detecting and counting sheep with a convolutional neural network. IEEE Int Conf Adv Video Signal Based Surveill (AVSS). https://doi.org/10.1109/avss.2018.8639306

    Article  Google Scholar 

  • Shao W, Kawakami R, Yoshihashi R, You S, Kawase H, Naemura T (2019) Cattle detection and counting in UAV images based on convolutional neural networks. Int J Remote Sens 41(1):31–52. https://doi.org/10.1080/01431161.2019.1624858

    Article  Google Scholar 

  • Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  • Stahl T, Pintea SL, van Gemert JC (2019) Divide and count: generic object counting by image divisions. IEEE Trans Image Process 28(2):1035–1044. https://doi.org/10.1109/tip.2018.2875353

    Article  MATH  Google Scholar 

  • Sun M, Yan W, Teng L, Jing L, Jun W (2017) Vehicle counting in crowded scenes with multi-channel and multi-task convolutional neural networks. J Vis Commun Image Represent 49:412–419. https://doi.org/10.1016/j.jvcir.2017.10.002

    Article  Google Scholar 

  • Wang J, Liu C, Tian F, Zheng L (2019) Research on automatic target detection and recognition based on deep learning. J Vis Commun Image Represent 60:44–50. https://doi.org/10.1016/j.jvcir.2019.01.017

    Article  Google Scholar 

  • Wu Y, Yinpeng C, Lu Y, Zicheng L, Lijuan W, Hongzhi L, Yun F (2019) Rethinking classification and localization in R-CNN. arXiv preprint arXiv:1409.1556

  • Xie W, Alison JN, Andrew Z (2016) Microscopy cell counting and detection with fully convolutional regression networks. Comput Methods Biomech Biomed Eng 6(3):283–292. https://doi.org/10.1080/21681163.2016.1149104

    Article  Google Scholar 

  • Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853

  • Yang Z, Liu S, Hu H, Wang L, Lin S (2019) Reppoints: point set representation for object detection. arXiv preprint arXiv:1904.11490

  • Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. IEEE Conf Comput Vis Pattern Recognit (CVPR). https://doi.org/10.1109/cvpr.2016.319

    Article  Google Scholar 

  • Zhou Y, Qixiang Y, Qiang Q, Jianbin J (2017) Oriented response networks. arXiv preprint arXiv:1701.01833

  • Zhou X, Wang D, Krähenbühl P (2019a) Objects as points. arXiv preprint arXiv:1904.07850

  • Zhou X, Wang D, Krähenbühl P (2019b) Bottom-up object detection by grouping extreme and center points. arXiv preprint arXiv:1901.08043

  • Zou Z, Zhenwei S, Yuhong G, Jieping Y (2019) Object detection in 20 years: a survey. arXiv preprint arXiv:1905.05055

Download references

Acknowledgements

This work is supported by Erciyes University, the Department of Research Projects under Contract FDK-2018-8624.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Kilic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilic, E., Ozturk, S. An accurate car counting in aerial images based on convolutional neural networks. J Ambient Intell Human Comput 14, 1259–1268 (2023). https://doi.org/10.1007/s12652-021-03377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03377-5

Keywords

Navigation