Skip to main content

Advertisement

Log in

Computation offloading model for smart factory

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Internet of Things (IoT) is coming up in a rapid pace in various application domains. In smart factories, IoT can be deployed using sensors and actuators for taking smart manufacturing decisions. To maintain the smartness, huge computational power is required to handle the generated data by the IoT sensors. Local servers, in smart factories, usually organize the sensors/actuators and takes decisions at the local level. However, they are not equipped with enough computational power to handle all types of computational tasks and therefore some tasks need to be offloaded to the upper layer such as Cloud. Hybrid cloud i.e. public cloud along with some local servers can better handle this requirement. Recently, an additional layer called fog computing is introduced in the cloud architecture to complement it with added power. Offloading of tasks, generated by the industrial applications of IoT devices, should be done only when existing computational power of local server is not able to meet the quality requirements of the tasks. An ultimate objective of the smart factory owner is to earn revenue and for that, IoT devices need to meet their quality of service expectation. For offloading, tasks can be categorized as delay sensitive and delay tolerant and making decision on offloading by the local server is non-trivial. This work proposes an offloading decision model using game theory in a non-cooperative environment considering the categorization of tasks and it is shown that dominant strategy exists for the local server. For the performance study of the proposed model, simulation is done using iFogSim simulator. A comparative study with state-of-art exhibits that the proposed offloading scheme outperforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ashjaei M, Bengtsson M (2017) Enhancing smart maintenance management using fog computing technology. In: IEEE International Conference On Industrial Engineering And Engineering Management, pp 1561–1565

  • Back T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bai X, Marinescu DC, Bölöni L et al (2008) A macroeconomic model for resource allocation in large-scale distributed systems. J Parallel Distrib Comput 68(2):182–199. https://doi.org/10.1016/j.jpdc.2007.07.001

    Article  MATH  Google Scholar 

  • Blum C, Li X (2008) Swarm intelligence in optimization. Swarm intelligence. Springer, Berlin Heidelberg, pp 43–85

    Chapter  Google Scholar 

  • Boyes H, Hallaq B, Cunningham J, Watson T (2018) The industrial internet of things (IIoT): an analysis framework. Comput Ind 101:1–12. https://doi.org/10.1016/j.compind.2018.04.015

    Article  Google Scholar 

  • Chang Z, Liu L, Guo X, Sheng Q (2020) Dynamic resource allocation and computation offloading for IoT Fog computing system. IEEE Trans Ind Informat. https://doi.org/10.1109/tii.2020.2978946

    Article  Google Scholar 

  • Chekired DA, Khoukhi L, Mouftah HT (2018) Industrial IoT data scheduling based on hierarchical fog computing: a key for enabling smart factory. IEEE Trans Ind Informat. https://doi.org/10.1109/TII.2018.2843802

    Article  Google Scholar 

  • Chiti F, Fantacci R, Picano B (2018) A matching theory framework for tasks offloading in fog computing for IoT systems. IEEE Internet Things J 5(6):5089–5096. https://doi.org/10.1109/JIOT.2018.2871251

    Article  Google Scholar 

  • Cloud Computing Price Comparison|Cloudorado—find best cloud server from top cloud computing companies [Online]. https://www.cloudorado.com/. Accessed 24 Jul 2018

  • Dastjerdi AV, Buyya R (2016) Fog computing: helping the internet of things realize its potential. Computer (Long Beach Calif). https://doi.org/10.1109/MC.2016.245

    Article  Google Scholar 

  • Dehnavi S, Faragardi HR, Kargahi M, Fahringer T (2019) A reliability-aware resource provisioning scheme for real- time industrial applications in a Fog-integrated smart factory. Microprocess Microsyst 70:1–14. https://doi.org/10.1016/j.micpro.2019.05.011

    Article  Google Scholar 

  • Duy TVT, Sato Y, Inoguchi Y (2010) Performance evaluation of a green scheduling algorithm for energy savings in cloud computing. In: Proceedings of the 2010 IEEE international symposium on parallel and distributed processing, workshops and Phd forum, IPDPSW 2010, pp 1–8

  • Electricity Prices: [Online]. https://www.globalpetrolprices.com/electricity_prices/. Accessed 16 Jul 2020

  • Flores H, Su X, Kostakos V, et al (2017) Large-scale offloading in the Internet of Things. In: 2017 IEEE international conference on pervasive computing and communications workshops, PerCom workshops 2017, pp 479–484

  • Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29:1645–1660. https://doi.org/10.1016/j.future.2013.01.010

    Article  Google Scholar 

  • Guérout T, Monteil T, Da Costa G et al (2013) Energy-aware simulation with DVFS. Simul Model Pract Theory 39:76–91. https://doi.org/10.1016/j.simpat.2013.04.007

    Article  Google Scholar 

  • Guerrero C, Lera I, Juiz C (2019) A lightweight decentralized service placement policy for performance optimization in fog computing. J Ambient Intell Hum Comput 10(6):2435–2452. https://doi.org/10.1007/s12652-018-0914-0

    Article  Google Scholar 

  • Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R (2017) iFogSim: a toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments. Software Pract Exp 47(9):1275–1296

  • Hasan R, Hossain M, Khan R (2018) Aura: an incentive-driven ad-hoc IoT cloud framework for proximal mobile computation offloading. Futur Gener Comput Syst 86:821–835. https://doi.org/10.1016/j.future.2017.11.024

    Article  Google Scholar 

  • Huang X, Cui Y, Chen Q, Zhang J (2020) Joint task offloading and QoS-aware resource allocation in fog- enabled Internet-of-Things networks. IEEE Internet Things J. https://doi.org/10.1109/jiot.2020.2982670

    Article  Google Scholar 

  • Jiang C, Cheng X, Gao H et al (2019) Toward computation offloading in edge computing: a survey. IEEE Access 7:131543–131558

    Article  Google Scholar 

  • Jin J, Gubbi J, Marusic S, Palaniswami M (2014) An information framework for creating a smart city through internet of things. IEEE Internet Things J 1(2):112121. https://doi.org/10.1109/JIOT.2013.2296516

    Article  Google Scholar 

  • Kim S (2015) Nested game-based computation offloading scheme for Mobile Cloud IoT systems. Eurasip J Wirel Commun Netw. https://doi.org/10.1186/s13638-015-0456-5

    Article  Google Scholar 

  • Lyu X, Tian H, Jiang L et al (2018) Selective offloading in mobile edge computing for the green internet of things. IEEE Netw 32(1):54–60. https://doi.org/10.1109/MNET.2018.1700101

    Article  Google Scholar 

  • Ma X, Lin C, Zhang H, Liu J (2018) Energy-aware computation offloading of IoT sensors in cloudlet-based mobile edge computing. Sensors (Switzerland). https://doi.org/10.3390/s18061945

    Article  Google Scholar 

  • Mach P, Becvar Z (2017) Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surv Tutor 19(3):1628–1656

    Article  Google Scholar 

  • Martin JP, Kandasamy A, Chandrasekaran K (2020) Mobility aware autonomic approach for the migration of application modules in fog computing environment. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-01854-x

    Article  Google Scholar 

  • Minh QT, Nguyen DT, Le A Van, et al (2017) Toward service placement on fog computing landscape. In: 2017 4th NAFOSTED conference on information and computer science, NICS 2017—proceedings, pp 291–296

  • Mubeen S, Nikolaidis P, Didic A et al (2017) Delay mitigation in offloaded cloud controllers in industrial IoT. IEEE Access 5:4418–4430. https://doi.org/10.1109/ACCESS.2017.2682499

    Article  Google Scholar 

  • Mukherjee M, Guo M, Lloret J et al (2020) Deadline-aware fair scheduling for offloaded tasks in fog computing with inter-fog dependency. IEEE Commun Lett. https://doi.org/10.1109/LCOMM.2019.2957741

    Article  Google Scholar 

  • Nan Y, Li W, Bao W et al (2017) Adaptive energy-aware computation offloading for cloud of things systems. IEEE Access 5:23947–23957. https://doi.org/10.1109/ACCESS.2017.2766165

    Article  Google Scholar 

  • Niyato D, Hossain E (2007) QoS-aware bandwidth allocation and admission control in IEEE 802.16 broadband wireless access networks: a non-cooperative game theoretic approach. Comput Netw 51(11):3305–3321. https://doi.org/10.1016/j.comnet.2007.01.031

  • O’Donovan P, Gallagher C, Leahy K, O’Sullivan DTJ (2019) A comparison of fog and cloud computing cyber- physical interfaces for Industry 4.0 real-time embedded machine learning engineering applications. Comput Ind 110:12–35. https://doi.org/10.1016/j.compind.2019.04.016

    Article  Google Scholar 

  • Paton N, Aragao M, Lee Kevin, Alvaro Fernandes RS (2009) Optimizing utility in cloud computing through autonomic workload execution. IEEE Data Eng 32(1):51–58

    Google Scholar 

  • Rahman A, Jin J, Cricenti A et al (2016) A cloud robotics framework of optimal task offloading for smart city applications. In: 2016 IEEE global communications conference, GLOBECOM 2016—proceedings, pp 1–7

  • Rahman A, Jin J, Cricenti AL et al (2019) Communication-aware cloud robotic task offloading with on-demand mobility for smart factory maintenance. IEEE Trans Ind Informat 15(5):2500–2511. https://doi.org/10.1109/TII.2018.2874693

    Article  Google Scholar 

  • Ranadheera S, Maghsudi S, Hossain E (2017) Mobile edge computation offloading using game theory and reinforcement learning. arXiv:1711.09012

  • Samie F, Tsoutsouras V, Bauer L, et al (2017) Computation offloading and resource allocation for low-power IoT edge devices. In: 2016 IEEE 3rd World Forum on Internet of Things, WF-IoT 2016, pp 7–12

  • Shah-Mansouri H, Wong VWS (2018) Hierarchical fog-cloud computing for IoT systems: a computation offloading game. IEEE Internet Things J 5(4):3246–3257. https://doi.org/10.1109/JIOT.2018.2838022

    Article  Google Scholar 

  • Shariatzadeh N, Lundholm T, Lindberg L, Sivard G (2016) Integration of digital factory with smart factory based on Internet of Things. In: Procedia CIRP, pp 512-517

  • Shiyong W, Jiafu W, Di L, Chunhua Z (2016) Implementing smart factory of industrie 4.0: an outlook. Int J Distrib Sens Netw 12(1):3159805

  • Shukla RM, Munir A (2017a) A computation offloading scheme leveraging parameter tuning for real-time IoT devices. In: Proceedings—2016 IEEE international symposium on nanoelectronic and information systems, iNIS 2016, pp 208–209

  • Shukla RM, Munir A (2017b) An efficient computation offloading architecture for the Internet of Things (IoT) devices. In: 2017 14th IEEE annual consumer communications and networking conference, CCNC 2017, pp 728–731

  • Talaat FM, Saraya MS, Saleh AI et al (2020) A load balancing and optimization strategy (LBOS) using reinforcement learning in fog computing environment. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-020-01768-8

    Article  Google Scholar 

  • Venticinque S, Amato A (2019) A methodology for deployment of IoT application in fog. J Ambient Intell Hum Comput 10(5):1955–1976. https://doi.org/10.1007/s12652-018-0785-4

    Article  Google Scholar 

  • Vögler M, Schleicher JM, Inzinger C et al (2015) LEONORE—large-scale provisioning of resource-constrained IoT deployments. In: Proceedings—9th IEEE international symposium on service-oriented system engineering, IEEE SOSE 2015, pp 78–87

  • Wan J, Chen B, Wang S et al (2018) Fog computing for energy-aware load balancing and scheduling in smart factory. IEEE Trans Ind Informat 14(10):4548–4556. https://doi.org/10.1109/TII.2018.2818932

    Article  Google Scholar 

  • Whitley D (1994) A genetic algorithm tutorial. Stat Comput. https://doi.org/10.1007/BF00175354

    Article  Google Scholar 

  • Yousefpour A, Ishigaki G, Gour R, Jue JP (2018) On reducing IoT service delay via fog offloading. IEEE Internet Things J 5(2):998–1010

    Article  Google Scholar 

  • Zhan W, Luo C, Min G et al (2020) Mobility-aware multi-user offloading optimization for mobile edge computing. IEEE Trans Veh Technol 69(3):3341–3356. https://doi.org/10.1109/TVT.2020.2966500

    Article  Google Scholar 

  • Zhang P, Yan Z (2011) A QoS-aware system for mobile cloud computing. In: CCIS2011—proceedings: 2011 ieee international conference on cloud computing and intelligence systems, pp 518–522

  • Zhu Q, Si B, Yang F, Ma Y (2017) Task offloading decision in fog computing system. China Commun 14(11):59–68. https://doi.org/10.1109/CC.2017.8233651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Baranwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranwal, G., Vidyarthi, D.P. Computation offloading model for smart factory. J Ambient Intell Human Comput 12, 8305–8318 (2021). https://doi.org/10.1007/s12652-020-02564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02564-0

Keywords

Navigation