Skip to main content
Log in

Dynamic management of a deep learning-based anomaly detection system for 5G networks

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Fog and mobile edge computing (MEC) will play a key role in the upcoming fifth generation (5G) mobile networks to support decentralized applications, data analytics and management into the network itself by using a highly distributed compute model. Furthermore, increasing attention is paid to providing user-centric cybersecurity solutions, which particularly require collecting, processing and analyzing significantly large amount of data traffic and huge number of network connections in 5G networks. In this regard, this paper proposes a MEC-oriented solution in 5G mobile networks to detect network anomalies in real-time and in autonomic way. Our proposal uses deep learning techniques to analyze network flows and to detect network anomalies. Moreover, it uses policies in order to provide an efficient and dynamic management system of the computing resources used in the anomaly detection process. The paper presents relevant aspects of the deployment of the proposal and experimental results to show its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abadi M, Barham P, Chen, J et al (2016) TensorFlow: a system for large-scale machine learning. In: 12th USENIX symposium on operating systems design and implementation, pp 265–283

  • Alrawais A, Alhothaily A, Hu C, Cheng X (2017) Fog computing for the internet of things: security and privacy issues. IEEE Internet Comput 21(2):34–42

    Article  Google Scholar 

  • Anagnostopoulos M, Kambourakis G, Gritzalis S (2016) New facets of mobile botnet: architecture and evaluation. Int J Inf Secur 15(5):455–473

    Article  Google Scholar 

  • Buczak A, Guven E (2016) A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun Surv Tutor 18(2):1153–1176

    Article  Google Scholar 

  • Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):15:1–15:58

    Article  Google Scholar 

  • Chang X, Nie F, Wang S, Yang Y, Zhou X, Zhang C (2016) Compound rank-\(k\) projections for bilinear analysis. IEEE Trans Neural Netw Learn Syst 27(7):1502–1513

    Article  MathSciNet  Google Scholar 

  • Chang X, Yu Y, Yang Y, Xing E (2017) Semantic pooling for complex event analysis in untrimmed videos. IEEE Trans Pattern Anal Mach Intell 39(8):1617–1632

    Article  Google Scholar 

  • Chen J, Cheng X, Du R, Hu L, Wang C (2017) BotGuard: lightweight real-time botnet detection in software defined networks. Wuhan Univ J Nat Sci 22(2):103–113

    Article  MathSciNet  Google Scholar 

  • ETSI NFV ISG (2017) Network functions virtualisation (NFV); Network Operator Perspectives on NFV priorities for 5G. Technical report. http://portal.etsi.org/NFV/NFV_White_Paper_5G.pdf

  • Facebook Open Source (2017) Caffe2: a new hightweight, modular, and scalable deep learning framework [online]. http://caffe2.ai. Accessed 25 April 2018

  • Fernández Maimó L, Perales Gómez A, García Clemente F, Gil Pérez M, Martínez Pérez G (2018) A self-adaptive deep learning-based system for anomaly detection in 5G networks. IEEE Access 6:7700–7712

    Article  Google Scholar 

  • Garcia S, Grill M, Stiborek J, Zunino A (2014) An empirical comparison of botnet detection methods. Comput Secur 45:100–123

    Article  Google Scholar 

  • Garcia-Teodoro P, Diaz-Verdejo J, Maciá-Fernández G, Vázquez E (2009) Anomaly-based network intrusion detection: techniques, systems and challenges. Comput Secur 28(1–2):18–28

    Article  Google Scholar 

  • Gardiner J, Nagaraja S (2016) On the security of machine learning in malware C&C detection: a survey. ACM Comput Surv 49(3):59:1–59:39

    Article  Google Scholar 

  • Gil Pérez M, Huertas Celdrán A, Ippoliti F et al (2017) Dynamic reconfiguration in 5G mobile networks to proactively detect and mitigate botnets. IEEE Internet Comput 21(5):28–36

    Article  Google Scholar 

  • Machado C, Granville L, Schaeffer-Filho A (2016) ANSwer: Combining NFV and SDN features for network resilience strategies. In: IEEE symposium on computers and communication, pp 391–396

  • Mantas G, Komninos N, Rodriguez J, Logota E, Marques H (2015) Security for 5G communications. In: Rodriguez J (ed) Fundamentals of 5G mobile networks. Wiley, Hoboken, pp 207–220

    Google Scholar 

  • Mijumbi R, Serrat J, Gorricho J, Bouten N, De Turck F, Boutaba R (2015) Network function virtualization: State-of-the-art and research challenges. IEEE Commun Surv Tut 18(1):236–262

    Article  Google Scholar 

  • Neves P, Calé R, Costa M et al (2017) Future mode of operations for 5G-The SELFNET approach enabled by SDN/NFV. Comp Stand Inter 54(4):229–246

    Article  Google Scholar 

  • Siddiqui MS, Legarrea A, Escalona E et al (2016) Hierarchical, virtualised and distributed intelligence 5G architecture for low-latency and secure applications. Trans Emerg Telecommun Technol 27(9):1233–1241

    Article  Google Scholar 

  • Sohal A, Sandhu R, Sood S, Chang V (2018) A cybersecurity framework to identify malicious edge device in fog computing and cloud-of-things environments. Comput Secur 74:340–354

    Article  Google Scholar 

  • Suárez-Albela M, Fernández-Caramés T, Fraga-Lamas P, Castedo L (2017) A practical evaluation of a high-security energy-efficient gateway for IoT fog computing applications. Sensors 17(9):1978

    Article  Google Scholar 

  • The 5G Infraestructure Public Private Partnership (5G-PPP) (2017) Key Performance Indicators [online]. http://5g-ppp.eu/kpis. Accessed 25 April 2018

  • Tran Q, Jiang F, Hu J (2012) A real-time NetFlow-based intrusion detection system with improved BBNN and high-frequency field programmable gate arrays. In: IEEE 11th international conference on trust, security and privacy in computing and communications, pp 201–208

  • Wang W, Sheng Y, Wang J et al (2018) HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access 6:1792–1806

    Article  Google Scholar 

  • Yin C, Zhu Y, Fei J, He X (2017) A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 5:21,954–21,961

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by a Séneca Foundation grant within the Human Resources Researching Postdoctoral Program 2018, a postdoctoral INCIBE grant within the “Ayudas para la Excelencia de los Equipos de Investigación Avanzada en Ciberseguridad” Program, with code INCIBEI-2015-27352, the European Commission Horizon 2020 Programme under Grant Agreement Number H2020-ICT-2014-2/671672 - SELFNET (Framework for Self-Organized Network Management in Virtualized and Software Defined Networks), and the European Commission (FEDER/ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix J. García Clemente.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández Maimó, L., Huertas Celdrán, A., Gil Pérez, M. et al. Dynamic management of a deep learning-based anomaly detection system for 5G networks. J Ambient Intell Human Comput 10, 3083–3097 (2019). https://doi.org/10.1007/s12652-018-0813-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-018-0813-4

Keywords

Navigation