Skip to main content
Log in

Visual analysis of traffic data based on topic modeling (ChinaVis 2017)

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

The spatio-temporal urban movement patterns can be extracted from the massive trajectory data recorded by GPS devices. Effectively analyzing the massive and complex traffic data and then finding useful information hidden in such data constitute challenging yet meaningful research. By providing the interactive visual analysis of the underlying traffic patterns of the city, the results can guide the users in choosing ideal locations for setting up shops for business operations. We construct the topic model to analyze the GPS taxi trajectory data. The topic information is combined with the traffic volume information to choose the representative candidate areas. Then, traffic flow graphs are generated between candidate areas to show the distribution of such areas and the taxi running rules. We study the distribution and semantics of the topics from three aspects: time, space, and POIs (points of interest). Thus, we can enhance the user’s understanding of area characters by semantics. In addition, inspired by the wheels of vehicles, we design a metaphor-based glyph to summarize the multi-dimensional attributes of each candidate area. Users can explore the prospective areas’ multiple attributes over time through varied interactions to learn the details of the area from multiple perspectives. Finally, we design and implement a visual analysis prototype system of traffic trajectory data as well as verify the feasibility and validity of the system in the case study.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Al-Dohuki S, Wu Y, Kamw F, SemanticTraj et al (2017) A new approach to interacting with massive taxi trajectories. IEEE Trans Visual Comput Graphics 23(1):11–20

    Article  Google Scholar 

  • Andrienko G and Andrienko N (2008) Spatio-temporal aggregation for visual analysis of movements. 2008 IEEE Symposium on Visual Analytics Science and Technology, pp 51–58

  • Andrienko G, Andrienko N, Wrobel S (2007) Visual analytics tools for analysis of movement data. SIGKDD Explor Newsl 9(2):38–46

    Article  Google Scholar 

  • Andrienko N, Andrienko G, Stange H et al (2012) Visual analytics for understanding spatial situations from episodic movement data. KI-Kunstliche Intelligenz 26(3):241–251

    Article  Google Scholar 

  • Andrienko G, Andrienko N, Bak P et al (2013a) Visual analytics of movement. Springer, Berlin

    Book  Google Scholar 

  • Andrienko N, Andrienko G, Fuchs G (2013) Towards privacy-preserving semantic mobility analysis. In: Proceedings of International EuroVis Workshop on Visual Analytics. Eurographics Association Press, pp 19–23

  • Blei DM (2012) Probabilistic topic models. Commun ACM 55(4):77–84

    Article  Google Scholar 

  • Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022

    MATH  Google Scholar 

  • Cao L, Li F (2007) Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes. In: Proceedings of the IEEE 11th International Conference on Computer Vision. IEEE Computer Society Press, pp 1–8

  • Chen W, Guo F, Wang FY (2015) A survey of traffic data visualization. IEEE Trans Intell Transp Syst 16(6):2970–2984

    Article  Google Scholar 

  • Chen Z, Wang Y, Sun T et al (2017) Exploring the design space of immersive urban analytics. Visual Informatics 1(2):132–142

    Article  Google Scholar 

  • Chu D, Sheets D. A, Zhao Y, et al. (2014) Visualizing hidden themes of trajectories with semantic transformation. In: Proceedings of IEEE Pacific Visualization Symposium. IEEE Computer Society Press, pp 137–144

  • Deerwester S, Dumais ST, Furnas GW et al (1990) Indexing by latent semantic analysis. J Am Soc Inf Sci 41(6):391–407

    Article  Google Scholar 

  • Ferreira N, Poco J, Vo HT et al (2013) Visual exploration of big spatial-temporal urban data: a study of New York city taxi trips. IEEE Trans Visual Comput Graphics 19(12):2149–2158

    Article  Google Scholar 

  • Guo D (2008) Regionalization with dynamically constrained agglomerative clustering and partitioning (redcap). Int J Geogr Inf Sci 22(7):801–823

    Article  Google Scholar 

  • Guo D (2009) Flow mapping and multivariate visualization of large spatial interaction data. IEEE Trans Vis Comp Graphics 15(6):1041–1048

    Article  Google Scholar 

  • Guo H, Wang Z, Yu B, et al. (2011) Tripvista: triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. Proceedings of IEEE Pacific Visualization Symposium. IEEE Computer Society Press, pp 163–170

  • Hofmann T (1999) Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 50–57

  • Hong F, Lai C, Guo H et al (2014) FLDA: latent Dirichlet allocation based unsteady flow analysis. IEEE Trans Visual Comput Graphics 20(12):2545–2554

    Article  Google Scholar 

  • Karamshuk D, Noulas A, Scellato S, et al. (2013) Geo-spotting: mining online location-based services for optimal retail store placement. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 793–801

  • Krüger R, Lohmann S, Thom D, et al. (2012) Using social media content in the visual analysis of movement data. Proceedings of 2nd workshop on interactive visual text analytics

  • Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Press, pp 2169–2178

  • Liao ZF, Li Y, Peng Y et al (2015) A semantic-enhanced trajectory visual analytics for digital forensic. J Vis 18(2):173–184

    Article  Google Scholar 

  • Liu H, Gao Y, Lu L, et al. (2011) Visual analysis of route diversity. In: Proceedings of IEEE conference on visual analytics science and technology. IEEE Computer Society Press, pp 171–180

  • Liu D, Weng D, Li Y et al (2017) SmartAdP: visual analytics of large-scale taxi trajectories for selecting billboard locations. IEEE Trans Visual Comput Graphics 23(1):1–10

    Article  Google Scholar 

  • Salton G, Yang CS (1973) On the specification of term values in automatic indexing. J Doc 29(4):351–372

    Article  Google Scholar 

  • Salton G, Wong A, Yang CS (1975a) A vector space model for automatic indexing. Commun ACM 18(11):613–620

    Article  MATH  Google Scholar 

  • Salton G, Yang CS, Yu CT (1975b) A theory of term importance in automatic text analysis. J Am Soc Inf Sci 26(1):33–44

    Article  Google Scholar 

  • Shneiderman B (1996) The eyes have it: A task by data type taxonomy for information visualizations. In: Proceedings of IEEE symposium on visual languages, pp 336–343

  • Sun G, Wu Y, Liang R et al (2013) A survey of visual analytics techniques and applications: state-of-the-art research and future challenges. J Computer Sci Technol 28(5):852–867

    Article  Google Scholar 

  • Sun G, Liang R, Qu H et al (2017) Embedding spatio-temporal information into maps by route-zooming. IEEE Trans Visual Comput Graphics 23(5):1506–1519

    Article  Google Scholar 

  • Landesberger T von, Bremm S, Andrienko N, et al. (2012) Visual analytics methods for categoric spatio-temporal data. In: Proceedings of IEEE Conference on Visual Analytics Science and Technology. IEEE Computer Society Press, pp 183–192

  • Wang X, Grimson E (2008) Spatial latent dirichlet allocation. In: Proceedings of neural information processing systems, pp 1577–1584

  • Weng D, Zhu H, Bao J, et al. (2018) HomeFinder revisited: finding ideal homes with reachability-centric multi-criteria decision making. To appear in Proceedings of ACM CHI 2018

  • Zeng W, Fu C et al (2017) Visualizing the relationship between human mobility and points-of-interest. IEEE Trans Intell Transp Syst 18(8):2271–2284

    Article  Google Scholar 

  • Zhao J, Forer P, Harvey AS (2008) Activities, ringmaps and geovisualization of large human movement fields. Inf Vis 7(3–4):198–209

    Article  Google Scholar 

  • Zheng Y, Capra L, Wolfson O et al (2014) Urban computing: concepts, methodologies, and applications. ACM Trans Intell Syst Technol 38:1–55

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank anonymous reviewers for their pertinent and insightful reviews, which were of great importance in improving the quality of this work. This work was supported by the National Science Foundation of China (Grant No. 71571160, 61672462).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxin Zhang or Xujia Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Sheng, F., Zhang, H. et al. Visual analysis of traffic data based on topic modeling (ChinaVis 2017). J Vis 21, 661–680 (2018). https://doi.org/10.1007/s12650-018-0481-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-018-0481-7

Keywords

Navigation