Skip to main content
Log in

Creep and Collapse Behaviour of Mechanically and Biologically Pre-treated Solid Waste in Oedomester Tests

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The paper deals with the compression behaviour of mixed fractions of a mechanically treated and biologically dried waste material with methanogenic fraction appropriate for landfilling in a bioreactor landfill. To this end oedometric compression tests were carried out with specimens taken from the Waste Management Center Marišćina, in Croatia. The compression behaviour up to a maximum vertical stress of 119.5 kPa was investigated in a sequence of seven load steps with an adapted oedometer device under three different drained test conditions: the dry state, the wet state, and wetting of the initially dry and pre-compressed material. The interpretation of experimental data focuses on the immediate compression and mechanical creep behaviour obtained within each load step. As the settlements are time dependent from the beginning of loading, no clear distinction between immediate and secondary compression can be gathered from the settlement-time curves. To this end a fictitious time where the immediate settlement ends is introduced based on common methods and a new method proposed in this paper. The latter, is named the strain-rate method, which defines the time where a given strain rate is relevant for the transition from the immediate compression to mechanical creep. Within the stress range considered, the approximation of mechanical creep using the so-called modified secondary compression index showed that the value of this index decreases for the moist waste material but it is almost constant for the dry material. Particular attention is also paid to so-called collapse settlements under constant load which can take place as a result of an increase of the moisture content. For the mathematical description of the mechanical behaviour enhanced approximation functions are proposed, which are also easy to handle for practical application. The experimental results are comprehensively discussed and compared with data from the literature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available in the Dabar repository, https://urn.nsk.hr/urn:nbn:hr:130:817727”.

References

  1. Waste Framework Directive: https://ec.europa.eu/environment/waste/framework/ (accessed 30 July 2022)

  2. Jessberger, H. L. and Kockel, R.: Determination and Assessment of the Mechanical Properties of Waste Materials. In: Proceedings of Sardinia 93, 4th International Landfill Symposium, S. Margherita di Pula, Cagliari (1993)

  3. Hossain. S.: Mechanics of Compressibility and Strength of Solid Waste in Bioreactor Landfills, PhD thesis, Faculty of North Carolina State University at Raleigh (2002)

  4. Sivakumar Babu, G.L., Reddy, K.R., Chouksey, S.K.: Constitutive model for municipal solid waste incorporating mechanical creep and biodegradation-induced compression. Waste Manage. 30, 11–22 (2010)

    Article  Google Scholar 

  5. Stoltz, G., Gourc, J.-P., Oxarango, L.: Characterisation of the physico-mechanical parameters of MSW. Waste Manage. 30, 1439–1449 (2010). https://doi.org/10.1016/j.wasman.2010.03.016

    Article  Google Scholar 

  6. Drut N., Gourc, J. P., Staub, M., Stoltz, G., Mansour, A.: Large-scale oedometers (ciclades) for monitoring the long-term hydromechanical behaviour of MSW, Fourth International Workshop “Hydro-Physico-Mechanics of Landfills” Santander, Spain; 27– 28 April (2011)

  7. Bareither, C.A., Benson, C.H., Edil, T.B.: Compression behavior of municipal solid waste: immediate compression. J. Geotech. Geoenviron. Eng. 2012(138), 1047–1062 (2012)

    Article  Google Scholar 

  8. Bareither, C.A., Benson, C.H., Edil, T.B., Barlaz, M.A.: Abiotic and biotic compression of municipal solid waste. J. Geotech. Geoenviron. Eng. 2012(138), 877–888 (2012)

    Article  Google Scholar 

  9. Bareither, C.A., Breitmeyer, R.J., Benson, C.H., Barlaz, M.A., Edil, T.B.: Deer track bioreactor experiment; field-scale evaluation of municipal solid waste bioreactor performance. J. Geotech. Geoenviron. Eng. 2012(138), 658–670 (2012)

    Article  Google Scholar 

  10. Bareither, C.A., Benson, C.H., Edil, T.B.: Compression of municipal solid waste in bioreactor landfills: mechanical creep and biocompression. J. Geotech. Geoenviron. Eng. 2013(139), 1007–1021 (2012)

    Google Scholar 

  11. Karimpour-Fard, M., Lemos, M.S.: Deformation characteristics of MSW materials. EJGE 17, 2009–2024 (2012)

    Google Scholar 

  12. Basha, B.M., Parakalla, N., Reddy, K.R.: Experimental and statistical evaluation of compressibility of fresh and landfilled municipal solid waste under elevated moisture contents. Int. J. Geotech. Eng. (2015). https://doi.org/10.1179/1939787915Y.0000000018

    Article  Google Scholar 

  13. Hong-jun, S., Bin, C., Li-hong, Z.: Experimental study of primary compression settlement of bioreactor landfills. Open Civ. Eng. J. 9, 1012–1015 (2015)

    Article  Google Scholar 

  14. Reddy, K.R., Hettiarachchi, H., Giri, R.K., Gangathulasi, J.: Effects of degradation on geotechnical properties of municipal solid waste from Orchard Hills Landfill, USA. Int. J. Geosynth. Ground Eng. 1(24), 15 (2015). https://doi.org/10.1007/s40891-015-0026-2

    Article  Google Scholar 

  15. Zhang, Z., Wu, D., Yan, L., Ding, Z., Wang, Y., Lei, S.: Experimental study on the compression properties of degraded municipal solid waste, Proceedings of the 8th International Conference on Waste Management and The Environment (2016). https://doi.org/10.2495/WM160241

  16. Zekkos, D., Fei, X., Grizi, A., Athanasopoulos, G.A.: Response of municipal solid waste to mechanical compression. J. Geotech. Geoenviron. Eng. 143(4), 1608 (2016). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001608

    Article  Google Scholar 

  17. Almohana A., Richards D.J., Stringfellow A.M.: The geotechnical properties of high organic content waste, Sardinia 2017, 16th International waste management and landfill symposium, S. Margherita di Pula (CA), Italy, 2–6 October (2017)

  18. Chen, Y.M., Zhan, T.L.T., Wei, H.Y., Ke, H.: Aging and compressibility of municipal solid wastes. Waste Manage. 29, 86–95 (2009)

    Article  Google Scholar 

  19. Chen, Y., Ke, H., Fredlund, D.G., Zhan, L., Xie, Y.: Secondary compression of municipal solid wastes and a compression model for predicting settlement of municipal solid waste landfills. J. Geotech. Geoenviron. Eng. 136(5), 706–717 (2010)

    Article  Google Scholar 

  20. Hadinata, F., Damanhuri, E., Rahardyan, B., Widyarsana, I.M.W.: Identification of initial settlement of municipal solid waste layers in Indonesian landfill. Waste Manage. Res. 36(8), 737–743 (2018)

    Article  Google Scholar 

  21. Thakur, D., Gupta, A.K., Ganguly, R.: Geotechnical properties of fresh and degraded MSW in the foothill of Shivalik Range Una, Himachal Pradesh. Int. J. Recent Technol. Eng. (2019). https://doi.org/10.35940/ijrte.B1497.078219

    Article  Google Scholar 

  22. Zeng, G., Ma, J., Hu, D., Wang, J.: Experimental study on compression and intrinsic permeability characteristics of municipal solid waste. Adv. Civ. Eng. (2019). https://doi.org/10.1155/2019/3541635

    Article  Google Scholar 

  23. Bidlingmaier, W., Scheelhaase, T., Maile, A.: Langzeitverhalten von mechanisch-biologisch vorbehandeltem Restmuell auf der Deponie, Abschlußbericht zum Teilvorhaben 3.1 des BMBF-Verbundvorhabens “Mechanisch-biologische Behandlung von zu deponierenden Abfaellen Universitaet Gesamthochschule Essen, Fachbereich 10 – Bauwesen, Fachgebiet Abfallwirtschaft (1999)

  24. Duellmann, H.: Untersuchungen zum Einbau von MBA-Abfaellen auf der Zentraldeponie Hannover, Laboruntersuchungen zum Verdichtungs-, Durchlaessigkeits-, Last-Setzungs- und Scherverhalten. Februar 2002. Im Auftrag des Abfallwirtschaftsbetriebes Hannover (2002)

  25. Carrubba, P., Cossu, R.: Investigation on compressibility and permeability of pre-treated waste mixture. In: Christensen, T.H., Cossu, R., Stegmann, R. (eds), Proceedings of the 9th international waste management and landfill symposium, S. Margherita di Pula, 6–10 October, Cagliari, Sardinia, Italy (2003)

  26. Heiss-Ziegler, C., Fehrer, K.: Geotechnical behaviour of mechanically-biologically pretreated MSW. In: Proceedings Sardinia 2003, 9th International Waste Management and Landfill Symposium S. Margherita di Pula, Cagliari, Italy, 6–10 October (2003)

  27. Bauer, J., Münnich, K., Fricke, K.: Investigation of Mechanical Properties of MBT Waste. In: Proceedings of the Fourth Asian-Pacific Landfill Symposium, Shanghai, China (2006)

  28. Münnich, K., Bauer J., Bahr T., Fricke K.: Landfilling of pre-treated waste - consequences for the construction and operation of landfills, Conference “The future of residual waste management in Europe” (2005)

  29. Velkushanova, K.: Characterization of wastes towards sustainable landfilling by some physical and mechanical properties with an emphasis on solid particles compressibility, PhD Thesis, Faculty of Engineering and the Environment, University of Southampton (2011)

  30. Hyun Il, P., Borinara, P., Hong, K.D.: Geotechnical considerations for end-use of old municipal solid waste landfills. Int. J. Environ. Res. 5(3), 573–584 (2011)

    Google Scholar 

  31. Siddiqui, A.A., Richards, D.J., Powrie, W.: Investigations into the landfill behaviour of pretreated wastes. Waste Manage. 32, 1420–1426 (2012). https://doi.org/10.1016/j.wasman.2012.03.016

    Article  Google Scholar 

  32. Zordan J., Gourc J. P., Oxarango l., Conte M., Carrubba P.: Biomechanical behaviour of MSW: settlements-biodegradation relationship study through experiment and modelling. In: Proceedings of Sardinia 2013, 14th International Waste Management and Landfill Symposium, S. Margherita di Pula, 30 September - 4 October, Cagliari, Sardinia, Italy (2013).

  33. Bortoluzzi, A.: Behaviour of an MBT waste in monotonic triaxial shear test, PhD thesis, University of Padova, Department of Civil Engineering (2014)

  34. Petrovic, I., Stuhec, D., Kovacic, D.: Large oedometer for measuring stiffness of MBT waste. Geotech. Test. J. 37(2), 296–310 (2014). https://doi.org/10.1520/GTJ20130015

    Article  Google Scholar 

  35. Lakshmikanthan, P., Santhosh, L.G., Sivakumar Babu, G.L.: Evaluation of the mechanical and hydrological characteristics of a bioreactor landfill using laboratory simulators, digital proceeding of ICOCEE – Cappadocia (2015)

  36. Zhang, Z., Fang, Y., Wang, Y., Xu, H.: Compression bahaviors of mechanically biologically treated wastes of Tianziling landfill in Hangzhou, China. Environ. Sci. Pollut. Res. 27, 43970–43986 (2020). https://doi.org/10.1007/s11356-020-10253-w

    Article  Google Scholar 

  37. Kuehle-Weidemeier, M.: Landfilling and properties of MBP waste, Proceedings Sardinia 2003. In: 9th International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, 6–10 October (2003)

  38. Ziehmann, G.: Veraenderung des mechanischen Verhaltens durch die mechanische und biologische Vorbehandlung, Deponierung von vorbehandelten Siedlungsabfaellen. Veroeffentlichungen des Zentrums fuer Abfallforschung der Technischen Universitaet Braunschweig, Heft 14, 1–9 (1999)

    Google Scholar 

  39. Navaee-Ardeh, S., Bertrand, F., Stuart, P.R.: Development and Experimental evaluation of a 1D distributed model of transport phenomena in a continuous biodrying process for pulp and paper mixed sludge. Dry. Technol. 29(2), 135–152 (2011). https://doi.org/10.1080/07373937.2010.482723

    Article  Google Scholar 

  40. Tambone, F., Scaglia, B., Scotti, S., Adani, F.: Effects of biodrying process on municipal solid waste properties. Bioresour. Technol. 102, 7443–7450 (2011). https://doi.org/10.1016/j.biortech.2011.05.010

    Article  Google Scholar 

  41. Yang, B., Zhang, L., Jahng, D.: Importance of initial moisture content and bulking agent for biodrying sewage sludge. Dry. Technol. 32(2), 135–144 (2013). https://doi.org/10.1080/07373937.2013.795586

    Article  Google Scholar 

  42. Dominczyk, A., Krzystek, L., Ledakowicz, S.: Biodrying of organic municipal wastes and residues from the pulp and paper industry. Dry. Technol. 32(11), 1297–1303 (2014). https://doi.org/10.1080/07373937.2014.901349

    Article  Google Scholar 

  43. Yang, B., Hao, Z., Jahng, D.: Advances in biodrying technologies for converting organic wastes into solid fuel. Dry. Technol. 35(16), 1950–1969 (2017). https://doi.org/10.1080/07373937.2017.1322100

    Article  Google Scholar 

  44. Slezak, R., Krzystek, L., Ledakowicz, S.: Biological drying of municipal solid waste from landfill. Dry. Technol. 38(1–2), 189–199 (2019). https://doi.org/10.1080/07373937.2019.1611599

    Article  Google Scholar 

  45. Ham, G.Y., Matsuto, T., Tojo, Y., Matsuo, T.: Material and moisture balance in a full-scale bio-drying MBT system for solid recovered fuel production. J. Mater. Cycles Waste Manage. 22, 167–175 (2019). https://doi.org/10.1007/s10163-019-00925-2

    Article  Google Scholar 

  46. Ham, G.Y., Lee, D.H., Matsuto, T., Tojo, Y., Park, J.R.: Simultaneous effects of airflow and temperature increase on water removal in bio-drying. J. Mater. Cycles Waste Manage. 22, 1056–1066 (2020). https://doi.org/10.1007/s10163-020-01000-x

    Article  Google Scholar 

  47. Terzaghi, K.: The shearing resistance of saturated soils and the angle between the planes of shear. In: 1st International Conference on Soil Mechanics and Foundation Engineering, pp. 54–56 (1936)

  48. Shariatmadari, et al.: Municipal solid waste effective stress analysis. Waste Manage. 29, 2918–2930 (2009)

    Article  Google Scholar 

  49. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  50. Skempton, A.W.: Effective stress in soils, concrete and rocks. In: Proc. Conf. Pore Pressure and Suction in Soils (1961)

  51. de Boer, T.: Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. Appl. Mech. Rev. 49, 201–262 (1996)

    Article  Google Scholar 

  52. Ehlers, W.: Effective stresses in multiphasic porous media: a thermodynamic investigation of a fully non-linear model with compressible and incompressible constituents. Geomech. Energy Environ. 15, 35–46 (2018). https://doi.org/10.1016/j.gete.2017.11.004

    Article  Google Scholar 

  53. Zhang, Z., Wang, Y., Hui, Xu., Fang, Y., Dazhi, Wu.: Influence of effective stress and dry density on the permeability of municipal solid waste. Waste Mang. Res. (2018). https://doi.org/10.1177/0734242X18763520

    Article  Google Scholar 

  54. Powrie, W., Xu, X-B., Richards, D., Zhan, L-T., Chen, Y-M.: Mechanisms of settlement in municipal solid waste landfills. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), ISSN 1673–565X (Print); ISSN 1862–1775 (Online) (2019)

  55. Liang, J.Y., Li, Y.M., Bauer, E.: A macro-microscopic coupled constitutive model for fluid-saturated porous media with compressible constituents. Transp. Porous Media (2022). https://doi.org/10.1007/s11242-021-01725-9

    Article  MathSciNet  Google Scholar 

  56. Sowers, G.F.: Settlement of waste disposal fills. Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering, pp. 207–210 (1973)

  57. Brauns, J., Kast, K., Blinde, A.: Compaction effects on the mechanical and saturation behaviour of disintegrated rockfill. Proc. Int. Conf. Compact. 1, 107–112 (1980)

    Google Scholar 

  58. Bauer, E.: Hypoplastic modelling of moisture-sensitive weathered rockfill materials. Acta Geotech. 4, 261–272 (2009)

    Article  Google Scholar 

  59. Ham, T.G., Nakata, Y., Orense, R., et al.: Influence of water on the compressive behavior of decomposed granite soil. J. Geotech. Geoenviron. Eng. 136(5), 697–705 (2010)

    Article  Google Scholar 

  60. Bauer, E., Fu, Z., Liu, S.: Influence of pressure and density on the rheological properties of rockfills. Front. Struct. Civ. Eng. 6, 25–34 (2012). https://doi.org/10.1007/s11709-012-0143-0

    Article  Google Scholar 

  61. Bareither, C.A., Benson, C.H., Edil, T.B.: Compression of municipal solid waste in bioreactor landfills: mechanical creep and biocompression. J. Geotech. Geoenviron. Eng. 2013(139), 1007–1021 (2013)

    Article  Google Scholar 

  62. Siddiqui, A.A., Powrie, W., Richards, D.J.: Settlement characteristics of mechanically biologically treated wastes. J. Geotech. Geoenviron. Eng. 139(10), 1676–1689 (2013)

    Article  Google Scholar 

  63. Landva, A.O., Valsangkar, A.J., Pelkey, S.G.: Lateral Earth Pressure at rest and compressibility of municipal solid waste. Can. Geotech. J. 37, 1157–1165 (2000)

    Article  Google Scholar 

  64. Hossain S.M., Gabr M.A.: Prediction of municipal solid waste landfill settlement with leachate recirculation. Proceedings of the Geo-Frontiers Congress 2005, ASCE, 168, 50. Austin, Texas (2005)

  65. Singh, M.K.: Characterization of stress-deformation behaviour of municipal solid waste. PhD thesis. University of Saskatchewan, Saskatoon, SK, p. 292 (2008).

  66. Rakic, D., Caki, L., Hadzi-Nikovic, G., Basaric, I.: Compressibility parameters of old municipal waste from two landfills in Serbia. Proceedings of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development, pp. 2741–2746 (2015). https://doi.org/10.1680/ecsmge.60678

  67. Handy, R.L.: First-order rate equations in geotechnical engineering. J. Geotech. Geoenviron. Eng. 128, 416–425 (2002). https://doi.org/10.1061/(ASCE)1090-0241(2002)128:5(416)

    Article  Google Scholar 

  68. Petrovic, I., Kaniski, N., Hrncic, N., Bosilj, D.: Variability in the solid particle density and its influence on the corresponding void ratio and dry density: a case study conducted on the MBT reject waste stream from the MBT plant in Marišćina, Croatia. Appl. Sci. 12(12), 6136 (2022). https://doi.org/10.3390/app12126136

    Article  Google Scholar 

  69. ASTM International: Standard Guide for Laboratory Subsampling of Media Related to Waste Management Activities (D6323–19). ASTM International, West Conshohocken, PA (2019)

    Google Scholar 

  70. ASTM International: Standard Test Method for Particle-size Analysis of Soils (Withdrawn 2016) (D422–63). ASTM International, West Conshohocken, PA (2007)

    Google Scholar 

  71. ASTM International: Standard Test Methods for Determining the Water (Moisture) Content, Ash Content, And Organic Material of Peat and Other Organic Soilss (D2974–20e1). ASTM International, West Conshohocken, PA (2020)

    Google Scholar 

  72. ASTM International: Standard Test Method for Specific Gravity of Soil Solids by Gas Pycnometer, (D 5550–14). ASTM International, West Conshohocken, PA (2016)

    Google Scholar 

  73. Yesiller, N., Hanson, J.L., Cox, J.T., Noce, D.E.: Determination of specific gravity of municipal solid waste. Waste Manage. 34(5), 848–858 (2014)

    Article  Google Scholar 

  74. Brauns, J., Kast, K., Blinde, A.: Compaction effects on the mechanical and saturation behavior of disintegrated rockfill. Proc. Int. Conf. 1, 107–112 (1980)

    Google Scholar 

  75. Ovalle, C., Dano, C., Hicher, P.Y., Cisternas, M.: Experimental framework for evaluating the mechanical behavior of dry and wet crushable granular materials based on the particle breakage ratio. Can. Geotech. J. 52, 587–598 (2015)

    Article  Google Scholar 

  76. Bauer, E.: Constitutive modelling of wetting deformation of rockfill materials. Int. J. Civ. Eng. 17, 481–486 (2019)

    Article  Google Scholar 

  77. Ohde, J.: Zur Theorie der Druckverteilung im Baugrund. Bauingenieur 20, 451–459 (1939). ((in German))

    Google Scholar 

  78. Janbu, N.: Soil compressibility as determined by oedometer and triaxial tests. Proceedings of European Conference on Soil Mechanics and Foundation Engineering (ECSMFE), Wiesbaden, Vol. 1, pp. 19–25 (1963) (in German).

  79. Bauer, E.: Zum mechanischen Verhalten granularer Stoffe unter vorwiegend ödometrischer Beanspruchung, p. 130. Veröffentlichungen des Institutes für Boden- und Felsmechanik der Universität Karlsruhe, Heft (1992). (in German)

    Google Scholar 

  80. Reddy, K.R., Hettiarachchi, H., Gangathulasi, J., Bogner, J.E.: Geotechnical properties of municipal solid waste at different phases of biodegradation. Waste Manage. 31, 2275–2286 (2011)

    Article  Google Scholar 

Download references

Funding

The financial support of the Croatian Ministry of Science and the Austrian Federal Ministry of Science, Research and Economy and the support of the OeAD Scientific and Technological Cooperation (WTZ Project: HR 01/2018 “Numerical modelling of the long-term behaviour of biostabilised MBT waste material”) financed by the Austrian Federal Ministry of Science, Research and Economy (BMWFW) is gratefully acknowledged. Further support of the Croatian Science Foundation for the project “Testing and modelling of mechanical behaviour of biodried waste as a Waste-to-Energy prerequisite” (UIP-2017-05-5157) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Nikola Kaniski and Nikola Hrncic conducted the oedometer test on Marišćina MBT waste and analysed the compression behaviour transitions from immediate to secondary compression. Erich Bauer and Igor Petrovic analysed the test data and reviewed and revised the full manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Igor Petrović.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaniški, N., Hrnčić, N., Petrović, I. et al. Creep and Collapse Behaviour of Mechanically and Biologically Pre-treated Solid Waste in Oedomester Tests. Waste Biomass Valor 14, 3751–3773 (2023). https://doi.org/10.1007/s12649-023-02089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02089-5

Keywords

Navigation