Skip to main content
Log in

Composition and Morphological Characteristics of Sulfonated Coconut Shell Biochar and its Use for Corncob Hydrolysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Coconut shell biochar was sulfonated by a reaction with concentrated sulfuric acid. The resulting solid acid catalyst was used for the hydrolysis of corncob. The effect of carbonization temperature in the range of 400–700 °C was studied using thermogravimetry, infrared (IR) spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction (SEM), and nitrogen adsorption techniques. The total acid concentration of the sulfonated particles was measured using Boehm titration. The biochar yield decreased from ≈35 to ≈27% with an increase in the carbonization temperature. IR spectroscopy showed absorption bands characteristic of fused carbon rings, carbonyl, sulfonyl, lignin aryl ether, and phenols in the biochar. The total acid density increased from 0.92 to 1.24 mmol/g with an increase in the carbonization temperature and decreased from 1.09 to 0.54 mmol/g with an increase in the H2SO4 concentration from 5 to 50 mL/g-biochar. The oxygen concentration in the raw coconut shell was ≈36 wt%. It decreased to ≈8 wt% in the biochar formed at 700 °C but increased to above 20 wt% after sulfonation. The Brunauer–Emmett–Teller (BET) surface area of the biochar was ≈400 m2/g and 1.5 − 3.5 m2/g after sulfonation. The sulfonated biochar was effective in the hydrolysis of corncob polysaccharides. The optimal sulfuric acid to biochar ratio for sulfonation was 5:1 (mL/g). The concentration of reducing sugars in the corncob hydrolysates was 2.1 − 2.8 g/100-g corncob. The coconut-shell-derived solid acid catalysts are expected to be of value in the valorization of a variety of waste biomass.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Additional data not presented in this manuscript will be made available on request.

References

  1. Kang, S., Ye, J., Chang, J.: Recent advances in carbon-based sulfonated catalyst: preparation and application. Int. Rev. Chem. Eng. 5(2), 133–144 (2013)

    Google Scholar 

  2. Liu, J.X., Huang, Y.D.: Heterogeneous acid-catalyzed hydrolysis of cellulose. Adv. Mater. Res. 512–515, 421–425 (2012). https://doi.org/10.4028/www.scientific.net/AMR.512-515.421

    Article  Google Scholar 

  3. Naji, S.Z., Tye, C.T.: A review of the synthesis of activated carbon for biodiesel production: precursor, preparation, and modification. Energy Convers. Manag.: X 13, 100152 (2022). https://doi.org/10.1016/j.ecmx.2021.100152

    Article  Google Scholar 

  4. Cao, X., Sun, S., Sun, R.: Application of biochar-based catalysts in biomass upgrading: a review. RSC Adv. 7(77), 48793–48805 (2017). https://doi.org/10.1039/C7RA09307A

    Article  Google Scholar 

  5. Tripathi, N., Hills, C.D., Singh, R.S., Atkinson, C.J.: Biomass waste utilisation in low-carbon products: harnessing a major potential resource. Npj Clim. Atmos. Sci. 2(1), 35 (2019). https://doi.org/10.1038/s41612-019-0093-5

    Article  Google Scholar 

  6. Fan, X., Wang, X., Zhao, B., Wan, J., Tang, J., Guo, X.: Sorption mechanisms of diethyl phthalate by nutshell biochar derived at different pyrolysis temperature. J. Environ. Chem. Eng. 10(2), 1328 (2022). https://doi.org/10.1016/j.jece.2022.107328

    Article  Google Scholar 

  7. Kabir Ahmad, R., Anwar Sulaiman, S., Yusup, S., Sham Dol, S., Inayat, M., Aminu Umar, H.: Exploring the potential of coconut shell biomass for charcoal production. Ain Shams Eng. J. 13(1), 101499 (2022). https://doi.org/10.1016/j.asej.2021.05.013

    Article  Google Scholar 

  8. Chong, C.C., Cheng, Y.W., Lam, M.K., Setiabudi, H.D., Vo, D.-V.: State-of-the-art of the synthesis and applications of sulfonated carbon-based catalysts for biodiesel production: a review. Energy Technol. 9(9), 2100303 (2021). https://doi.org/10.1002/ente.202100303

    Article  Google Scholar 

  9. Henning, K.-D., von Kienle, H.: Carbon, 5 Activated Carbon. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, Weinheim (2000). https://doi.org/10.1002/14356007.n05_n04

    Book  Google Scholar 

  10. Wang, C., Li, L., Shi, J., Jin, H.: Biochar production by coconut shell gasification in supercritical water and evolution of its porous structure. J. Anal. Appl. Pyrolysis 156, 105151 (2021). https://doi.org/10.1016/j.jaap.2021.105151

    Article  Google Scholar 

  11. Khawkomol, S., Neamchan, R., Thongsamer, T., Vinitnantharat, S., Panpradit, B., Sohsalam, P., et al.: Potential of biochar derived from agricultural residues for sustainable management. Sustainability 13(15), 8147 (2021). https://doi.org/10.3390/su13158147

    Article  Google Scholar 

  12. Xing, T., Yun, S., Li, B., Wang, K., Chen, J., Jia, B., et al.: Coconut-shell-derived bio-based carbon enhanced microbial electrolysis cells for upgrading anaerobic co-digestion of cow manure and aloe peel waste. Bioresour. Technol. 338, 125520 (2021). https://doi.org/10.1016/j.biortech.2021.125520

    Article  Google Scholar 

  13. Liang, Q., Liu, Y., Chen, M., Ma, L., Yang, B., Li, L., et al.: Optimized preparation of activated carbon from coconut shell and municipal sludge. Mater. Chem. Phys. 241, 122327 (2020). https://doi.org/10.1016/j.matchemphys.2019.122327

    Article  Google Scholar 

  14. Castilla-Caballero, D., Barraza-Burgos, J., Gunasekaran, S., Roa-Espinosa, A., Colina-Márquez, J., Machuca-Martínez, F., et al.: Experimental data on the production and characterization of biochars derived from coconut-shell wastes obtained from the Colombian Pacific Coast at low temperature pyrolysis. Data Br. 28, 104855 (2020). https://doi.org/10.1016/j.dib.2019.104855

    Article  Google Scholar 

  15. Mallick, A., Mukhopadhyay, M., Ash, S.: Synthesis, characterization and performance evaluation of a solid acid catalyst prepared from coconut shell for hydrolyzing pretreated Acacia nilotica heartwood. J. Inst. Eng.: Ser. E 101(1), 69–76 (2020). https://doi.org/10.1007/s40034-019-00153-1

    Article  Google Scholar 

  16. Muralikrishnan, R., Jodhi, C.: Biodecolorization of reactive dyes using biochar derived from coconut shell: batch, isotherm, kinetic and desorption studies. ChemistrySelect. 5(26), 7734–7742 (2020). https://doi.org/10.1002/slct.202001454

    Article  Google Scholar 

  17. Sarkar, J.K., Wang, Q.: Different pyrolysis process conditions of south Asian waste coconut shell and characterization of gas, bio-char, and bio-oil. Energies 13(8), 1970 (2020). https://doi.org/10.3390/en13081970

    Article  Google Scholar 

  18. Bhandari, P.S., Gogate, P.R.: Kinetic and thermodynamic study of adsorptive removal of sodium dodecyl benzene sulfonate using adsorbent based on thermo-chemical activation of coconut shell. J. Mol. Liq. 252, 495–505 (2018). https://doi.org/10.1016/j.molliq.2017.12.018

    Article  Google Scholar 

  19. Endut, A., Abdullah, S.H.Y.S., Hanapi, N.H.M., Hamid, S.H.A., Lananan, F., Kamarudin, M.K.A., et al.: Optimization of biodiesel production by solid acid catalyst derived from coconut shell via response surface methodology. Int. Biodeterior. Biodegrad. 124, 250–257 (2017). https://doi.org/10.1016/j.ibiod.2017.06.008

    Article  Google Scholar 

  20. Rout, T., Pradhan, D., Singh, R.K., Kumari, N.: Exhaustive study of products obtained from coconut shell pyrolysis. J. Environ. Chem. Eng. 4(3), 3696–3705 (2016). https://doi.org/10.1016/j.jece.2016.02.024

    Article  Google Scholar 

  21. Liyanage, C.D., Pieris, M.: A physico-chemical analysis of coconut shell powder. Procedia Chem. 16, 222–228 (2015). https://doi.org/10.1016/j.proche.2015.12.045

    Article  Google Scholar 

  22. Wang, X., Li, D., Li, W., Peng, J., Xia, H., Zhang, L., et al.: Optimization of mesoporous activated carbon from coconut shells by chemical activation with phosphoric acid. BioResources 8(4), 12 (2013)

    Article  Google Scholar 

  23. Shenbagavalli, S., Mahimairaja, S.: Production and characterization of biochar from different biological wastes. Int. J. Plant, Anim. Environ. Sci. 2(1), 197–201 (2012)

    Google Scholar 

  24. Li, W., Yang, K., Peng, J., Zhang, L., Guo, S., Xia, H.: Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind. Crops Prod. 28(2), 190–198 (2008). https://doi.org/10.1016/j.indcrop.2008.02.012

    Article  Google Scholar 

  25. Zeng, M., Pan, X.: Insights into solid acid catalysts for efficient cellulose hydrolysis to glucose: progress, challenges, and future opportunities. Catal. Rev. (2020). https://doi.org/10.1080/01614940.2020.1819936

    Article  Google Scholar 

  26. Gandam, P.K., Chinta, M.L., Pabbathi, N.P.P., Velidandi, A., Sharma, M., Kuhad, R.C., et al.: Corncob-based biorefinery: a comprehensive review of pre-treatment methodologies, and biorefinery platforms. J. Energy Inst. 101, 290–308 (2022). https://doi.org/10.1016/j.joei.2022.01.004

    Article  Google Scholar 

  27. Mohlala, L.M., Bodunrin, M.O., Awosusi, A.A., Daramola, M.O., Cele, N.P., Olubambi, P.A.: Beneficiation of corncob and sugarcane bagasse for energy generation and materials development in Nigeria and South Africa: a short overview. Alex. Eng. J. 55(3), 3025–3036 (2016). https://doi.org/10.1016/j.aej.2016.05.014

    Article  Google Scholar 

  28. Sharma, P., Gaur, V.K., Gupta, S., Varjani, S., Pandey, A., Gnansounou, E., et al.: Trends in mitigation of industrial waste: global health hazards, environmental implications and waste derived economy for environmental sustainability. Sci. Total Environ. 811, 152357 (2022). https://doi.org/10.1016/j.scitotenv.2021.152357

    Article  Google Scholar 

  29. Elegbede, J.A., Ajayi, V.A., Lateef, A.: Microbial valorization of corncob: Novel route for biotechnological products for sustainable bioeconomy. Environ. Technol. Innov. 24, 1073 (2021). https://doi.org/10.1016/j.eti.2021.102073

    Article  Google Scholar 

  30. Liang, C., Hu, Y., Wang, Y., Wu, L., Zhang, W.: Production of levulinic acid from corn cob residue in a fed-batch acid hydrolysis process. Process Biochem. 73, 124–131 (2018). https://doi.org/10.1016/j.procbio.2018.08.002

    Article  Google Scholar 

  31. Liu, Q.-Y., Yang, F., Sun, X.-F., Liu, Z.-H., Li, G.: Preparation of biochar catalyst with saccharide and lignocellulose residues of corncob degradation for corncob hydrolysis into furfural. J. Mater. Cycles Waste Manag. 19(1), 134–143 (2017). https://doi.org/10.1007/s10163-015-0392-9

    Article  Google Scholar 

  32. Liu, Q.-y, Yang, F., Sun, X.-f, Liu, Z.-h, Li, G.: Hydrolysis of corncob catalyzed by self-derived carbonaceous solid acid. Energy Sour., A: Recover., Utilization, Environ. Effects 39(11), 1079–85 (2017). https://doi.org/10.1080/15567036.2014.935893

    Article  Google Scholar 

  33. Zhang, H., Xu, Y., Yu, S.: Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. Biores. Technol. 234, 343–349 (2017). https://doi.org/10.1016/j.biortech.2017.02.094

    Article  Google Scholar 

  34. Lee, J.-W., Jeffries, T.W.: Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Biores. Technol. 102(10), 5884–5890 (2011). https://doi.org/10.1016/j.biortech.2011.02.048

    Article  Google Scholar 

  35. Harmer, M.A., Fan, A., Liauw, A., Kumar, R.K.: A new route to high yield sugars from biomass: phosphoric–sulfuric acid. Chem. Commun. 43, 6610–6612 (2009). https://doi.org/10.1039/B916048E

    Article  Google Scholar 

  36. Chen, M., Xia, L., Xue, P.: Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int. Biodeterior. Biodegradation 59(2), 85–89 (2007). https://doi.org/10.1016/j.ibiod.2006.07.011

    Article  Google Scholar 

  37. Eken-Saraçoğlu, N., Mutlu, S.F., Dilmaç, G., Çavuşoğlu, H.: A comparative kinetic study of acidic hemicellulose hydrolysis in corn cob and sunflower seed hull. Biores. Technol. 65(1), 29–33 (1998). https://doi.org/10.1016/S0960-8524(98)00032-7

    Article  Google Scholar 

  38. Gil Tortosa, C.I., García Breijo, F.J., Primo, Y.E.: An economic process for preparation of xylose and derivatives by hydrolysis of corn cobs. Biol. Wastes 33(4), 275–286 (1990). https://doi.org/10.1016/0269-7483(90)90131-B

    Article  Google Scholar 

  39. Wang, G.S., Lee, J.-W., Zhu, J.Y., Jeffries, T.W.: Dilute acid pretreatment of corncob for efficient sugar production. Appl. Biochem. Biotechnol. 163(5), 658–668 (2011). https://doi.org/10.1007/s12010-010-9071-4

    Article  Google Scholar 

  40. Gómora-Hernández, J.C., Carreño-de-León, Md.C., Flores-Alamo, N., Hernández-Berriel, Md.C., Fernández-Valverde, S.M.: Kinetic and thermodynamic study of corncob hydrolysis in phosphoric acid with a low yield of bacterial inhibitors. Biomass and Bioenergy 143, 105830 (2020). https://doi.org/10.1016/j.biombioe.2020.105830

    Article  Google Scholar 

  41. Nantapipat, J., Luengnaruemitchai, A., Wongkasemjit, S.: A comparison of dilute sulfuric and phosphoric acid pre-treatments in biofuel production from corncobs. Int. J. Chem. Mol. Eng. 7(4), 197–201 (2013). https://doi.org/10.5281/zenodo.1330587

    Article  Google Scholar 

  42. Zhu, T., Li, P., Wang, X., Yang, W., Chang, H., Ma, S.: Optimization of formic acid hydrolysis of corn cob in xylose production. Kor. J. Chem. Eng. 31(9), 1624–31 (2014). https://doi.org/10.1007/s11814-014-0073-8

    Article  Google Scholar 

  43. Li, S., Gu, Z., Bjornson, B.E., Muthukumarappan, A.: Biochar based solid acid catalyst hydrolyze biomass. J. Environ. Chem. Eng. 1(4), 1174–1181 (2013). https://doi.org/10.1016/j.jece.2013.09.004

    Article  Google Scholar 

  44. Rekha, B., Saravanathamizhan, R.: Preparation and characterization of biomass-based nanocatalyst for hydrolysis and fermentation of catalytic hydrolysate to bioethanol. Biomass Convers. Bioref. (2021). https://doi.org/10.1007/s13399-020-01207-w

    Article  Google Scholar 

  45. Abbaci, F., Nait-Merzoug, A., Guellati, O., Harat, A., El Haskouri, J., Delhalle, J., et al.: Bio/KOH ratio effect on activated biochar and their dye based wastewater depollution. J. Anal. Appl. Pyrolysis 162, 105452 (2022)

    Article  Google Scholar 

  46. Liu, W., Wu, R., Wang, B., Hu, Y., Hou, Q., Zhang, P., et al.: Comparative study on different pre-treatment on enzymatic hydrolysis of corncob residues. Bioresour. Technol. 295, 122244 (2020). https://doi.org/10.1016/j.biortech.2019.122244

    Article  Google Scholar 

  47. da Luz Corrêa, A.P., Bastos, R.R.C., Rocha Filho, GNd., Zamian, J.R., Conceição, L.RVd.: Preparation of sulfonated carbon-based catalysts from murumuru kernel shell and their performance in the esterification reaction. RSC Adv. 10(34), 20245–56 (2020). https://doi.org/10.1039/d0ra03217d

    Article  Google Scholar 

  48. Lee, D.: Preparation of a sulfonated carbonaceous material from lignosulfonate and its usefulness as an esterification catalyst. Molecules 18(7), 8168–8180 (2013). https://doi.org/10.3390/molecules18078168

    Article  Google Scholar 

  49. Benak, K.R., Dominguez, L., Economy, J., Mangun, C.L.: Sulfonation of pyropolymeric fibers derived from phenol-formaldehyde resins. Carbon 40(13), 2323–2332 (2002). https://doi.org/10.1016/S0008-6223(02)00146-X

    Article  Google Scholar 

  50. Goertzen, S.L., Thériault, K.D., Oickle, A.M., Tarasuk, A.C., Andreas, H.A.: Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon 48(4), 1252–61 (2010). https://doi.org/10.1016/j.carbon.2009.11.050

    Article  Google Scholar 

  51. Vilcocq, L., Crepet, A., Jame, P., Carvalheiro, F., Duarte, L.C.J.R.: Combination of autohydrolysis and catalytic hydrolysis of biomass for the production of hemicellulose oligosaccharides and sugars. Reactions 3(1), 30–46 (2022). https://doi.org/10.3390/reactions3010003

    Article  Google Scholar 

  52. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  53. Achyuthan, K.E., Achyuthan, A.M., Adams, P.D., Dirk, S.M., Harper, J.C., Simmons, B.A., et al.: Supramolecular self-assembled chaos: polyphenolic lignin’s barrier to cost-effective lignocellulosic biofuels. Molecules 15(12), 8641–8688 (2010)

    Article  Google Scholar 

  54. Queirós, C.S.G.P., Cardoso, S., Lourenço, A., Ferreira, J., Miranda, I., Lourenço, M.J.V., et al.: Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Convers. Bioref. 10(1), 175–188 (2020). https://doi.org/10.1007/s13399-019-00424-2

    Article  Google Scholar 

  55. Meng, Y., Contescu, C.I., Liu, P., Wang, S., Lee, S.-H., Guo, J., et al.: Understanding the local structure of disordered carbons from cellulose and lignin. Wood Sci. Technol. 55(3), 587–606 (2021). https://doi.org/10.1007/s00226-021-01286-6

    Article  Google Scholar 

  56. Kumar, N., Dixit, A.: Chapter 4—management of biomass. In: Kumar, N., Dixit, A. (eds.) Nanotechnology for Rural Development, pp. 97–140. Elsevier, Amsteradam (2021). https://doi.org/10.1016/B978-0-12-824352-7.00004-9

    Chapter  Google Scholar 

  57. Azzaz, A.A., Matei Ghimbeu, C., Jellai, S., El-Bassi, L., Jeguirim, M.: Olive mill by-products thermochemical conversion via hydrothermal carbonization and slow pyrolysis: detailed comparison between the generated hydrochars and biochars characteristics. Processes 10(2), 231 (2022). https://doi.org/10.3390/pr10020231

    Article  Google Scholar 

  58. Kabayo, S.M., Kindala, J.T., Nkanga, C.I., Krause, R.W., Taba, K.M.: Preparation and characterization of solid acid catalysts derived from coffee husks. Int. J. Chem. Sci. 3(6), 5–13 (2019)

    Google Scholar 

  59. Yu, J.T., Dehkhoda, A.M., Ellis, N.: Development of Biochar-based catalyst for transesterification of canola oil. Energy Fuels 25(1), 337–344 (2010). https://doi.org/10.1021/ef100977d

    Article  Google Scholar 

  60. Cheng, F., Li, X.: Preparation and application of biochar-based catalysts for biofuel production. Catalysts (2018). https://doi.org/10.3390/catal8090346

    Article  Google Scholar 

  61. Bekiaris, G., Koutrotsios, G., Tarantilis, P.A., Pappas, C.S., Zervakis, G.I.: FTIR assessment of compositional changes in lignocellulosic wastes during cultivation of Cyclocybe cylindracea mushrooms and use of chemometric models to predict production performance. J. Mater. Cycles Waste Manag. 22(4), 1027–1035 (2020). https://doi.org/10.1007/s10163-020-00995-7

    Article  Google Scholar 

  62. Rasheed, M., Jawaid, M., Karim, Z., Abdullah, L.C.: Morphological, physiochemical and thermal properties of microcrystalline cellulose (MCC) extracted from bamboo fiber. Molecules 25(12), 2824 (2020)

    Article  Google Scholar 

  63. Mateo, W., Lei, H., Villota, E., Qian, M., Zhao, Y., Huo, E., et al.: Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics. Bioresour. Technol. 297, 122411 (2020). https://doi.org/10.1016/j.biortech.2019.122411

    Article  Google Scholar 

  64. Zhuang J, Li M, Pu Y, Ragauskas AJ, Yoo CG (2020) Observation of potential contaminants in processed biomass using spectroscopy. Appl. Sci. 10(12):4345. https://doi.org/10.3390/app10124345.

    Article  Google Scholar 

  65. Chen, G., Fang, B.: Preparation of solid acid catalyst from glucose–starch mixture for biodiesel production. Biores. Technol. 102(3), 2635–2640 (2011). https://doi.org/10.1016/j.biortech.2010.10.099

    Article  MathSciNet  Google Scholar 

  66. Hong, T., Yin, J.-Y., Nie, S.-P., Xie, M.-Y.: Applications of infrared spectroscopy in polysaccharide structural analysis: progress, challenge and perspective. Food Chem.: X 12, 100168 (2021). https://doi.org/10.1016/j.fochx.2021.100168

    Article  Google Scholar 

  67. Wiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M.Z., Majzner, K., Kochan, K., et al.: Raman and infrared spectroscopy of carbohydrates: a review. Spectrochim. Acta A Mol. Biomol. Spectrosc. 185, 317–335 (2017). https://doi.org/10.1016/j.saa.2017.05.045

    Article  Google Scholar 

  68. Xu, Y., Li, X., Zhang, X., Wang, W., Liu, S., Qi, W., et al.: Hydrolysis of corncob using a modified carbon-based solid acid catalyst. BioResources 11(4), 10469–82 (2016)

    Article  Google Scholar 

  69. Nishiyama, Y., Langan, P., Chanzy, H.: Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124(31), 9074–9082 (2002). https://doi.org/10.1021/ja0257319

    Article  Google Scholar 

  70. Krishnan, S.: X-ray scattering investigation of carbon-nanotube-based polymer composites. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds.) Handbook of Carbon Nanotubes, pp. 1–37. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-319-70614-6_13-1

    Chapter  Google Scholar 

  71. Sankarasubramanian, M., Torabizadeh, M., Putnam, Z.A., Moosbrugger, J.C., Huang, M.Y., Krishnan, S.: Enhanced elastomer toughness and fracture properties imparted by chemically reactive flat nanoparticles. Polym. Test. 78, 105932 (2019). https://doi.org/10.1016/j.polymertesting.2019.105932

    Article  Google Scholar 

  72. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., et al.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  73. Pointner, M., Kuttner, P., Obrlik, T., Jager, A., Kahr, H.: Composition of corncobs as a substrate for fermentation of biofuels. Agron. Res. 12(2), 391–396 (2014)

    Google Scholar 

  74. Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., et al.: Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J. Am. Chem. Soc. 130(38), 12787–12793 (2008). https://doi.org/10.1021/ja803983h

    Article  Google Scholar 

  75. Morales-delaRosa, S., Campos-Martin, J.M., Fierro, J.L.G.: Chemical hydrolysis of cellulose into fermentable sugars through ionic liquids and antisolvent pre-treatments using heterogeneous catalysts. Catal. Today 302, 87–93 (2018). https://doi.org/10.1016/j.cattod.2017.08.033

    Article  Google Scholar 

  76. Kitano, M., Yamaguchi, D., Suganuma, S., Nakajima, K., Kato, H., Hayashi, S., et al.: Adsorption-enhanced hydrolysis of β-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. Langmuir 25(9), 5068–5075 (2009). https://doi.org/10.1021/la8040506

    Article  Google Scholar 

Download references

Acknowledgements

The use of experimental facilities at the Center for Advanced Materials Processing, a New York State Center for Advanced Technology, at Clarkson University, is gratefully acknowledged. We would like to thank Hubert Bilan for the help in acquiring the scanning electron microscopy images and Christy Behe for the nitrogen adsorption data acquisition. This research was supported by the Obafemi Awolowo University and the Center for Advanced Materials Processing.

Funding

This study received no external funding from anyone or organisation except contributions from authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oludare Johnson Odejobi or Sitaraman Krishnan.

Ethics declarations

Conflict of interest

The authors are not connected to or financially involved with any individuals or organizations that would have conflict of interest with the topic or information covered in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igboke, O.J., Odejobi, O.J., Orimolade, T. et al. Composition and Morphological Characteristics of Sulfonated Coconut Shell Biochar and its Use for Corncob Hydrolysis. Waste Biomass Valor 14, 3097–3113 (2023). https://doi.org/10.1007/s12649-023-02080-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02080-0

Keywords

Navigation