Skip to main content
Log in

Exploitation of Liquid CO2 Based Greener Process for Valorization of Citronellal-Rich Essential Oils Into Flavor Grade (−)-Menthol Using Novel Sn/Al-B-NaYZE Composites

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A two-step greener catalytic process has been developed for the semi-synthesis of (−)-menthol from citronellal-rich essential oils such as Cymbopogon winterianus and Corymbia citriodora by using novel bi-acidic composites. These novel composites (Al-B-NaYZE or Sn-B-NaYZE) were prepared by impregnation of Sn-B and Al-B over NaYZE framework to increase the Lewis and Bronsted acidic sites. These composites were thoroughly characterized using TDP, FT-IR, UV, XRD, SEM, HRTEM, SA, and TGA. The composite Sn-B-NaYZE cyclized 99% of citronellal to isopulegol isomers with 99% selectivity in 45 min under a liquid CO2 medium, while composite Al-B-NaYZE is showing 95% selectivity towards isopulegol isomers. Sn-B-NaYZE displayed enhanced selectivity due to its higher Lewis and Bronsted acidic characteristics. The chiral study indicated that the Sn-B-NaYZE composite is giving the highest selectivity (94%) towards (−)-isopulegol. (+)-Citronellal or citronella essential oil was found as an ideal substrate for (−)-menthol production. It observed that the Sn-B molar ratio over base material NaY-Zeolite played a major role in catalytic activity and selectivity towards (−)-isopulegol. Further, isopulegol isomers were reduced to 98% of menthol using 1%Pd/AC at 40 psi H2 pressure in 1 h. The reaction mixture was slowly frozen to -40 °C for trouble-free isolation of the crude menthol. Further, pharmaceutical and flavor grade (−)-menthol was purified from the crude menthol through an esterification process. This (−)-menthol was found to be 100% biobased on 14C-radiocarbon-dating to authenticate as nature-identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data are available and a part the data are summarized as Supplementary materials.

Abbreviations

AC:

Activated charcoal

ZE:

Zeolite

NaYZE:

Na-Y-Zeolite

YZE:

Y-H-Zeolite

AMS:

Accelerator Mass Spectrometry

pMC:

Percentage of modern carbon

AGE:

Automated graphitization equipment

EU:

Corymbia citriodora

CIM-Jeeva:

CIM-Jeeva: A variety of citronella

BIO-13:

A variety of citronella

EU-1:

Fresh eucalyptus essential oil

EU-2:

Modified eucalyptus oil

EU-3:

Spent eucalyptus oil

CNJ-1:

Fresh citronella Jeeva essential oil

CNJ-2:

Modified Jeeva oil

CNJ-3:

Spent Jeeva oil

CNB-1:

Fresh citronella Bio-13 essential oil

CNB-2:

Modified Bio-13 essential oil

CNB-3:

Spent Bio-13 oil

References

  1. Santos, M.G., Carpinteiro, D.A., Thomazini, M., Rocha-Selmi, G.A., da Cruz, A.G., Rodrigues, C.E., Favaro-Trindade, C.S.: Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Res. Int. 6, 454–462 (2014)

    Article  Google Scholar 

  2. Guerra, I.C.D., de Oliveira, P.D.L., Santos, M.M.F., Lúcio, A.S.S.C., Tavares, J.F., Barbosa-Filho, J.M., Madruga, M.S., de Souza, E.L.: The effects of composite coatings containing chitosan and Mentha (Piperita L. or x Villosa huds) essential oil on postharvest mold occurrence and quality of table grape cv. Isabella. Innov. Food Sci. Emerg. Technol. 34, 112–121 (2016)

    Article  Google Scholar 

  3. Egan, M., Connors, É.M., Anwar, Z., Walsh, J.J.: Nature’s treatment for irritable bowel syndrome: studies on the isolation of (−)-menthol from peppermint oil and its conversion to (−)-menthyl acetate. J. Chem. Educ. 92, 1736–1740 (2015)

    Article  Google Scholar 

  4. Chanotiya, C.S., Pragadheesh, V.S., Yadav, A., Gupta, P., Lal, R.K.: Cyclodextrin-based gas chromatography and GC/MS methods for determination of chiral pair constituents in mint essential oils. J. Essent. Oil Res. 33, 23–31 (2021)

    Article  Google Scholar 

  5. Prakash, O.M., Naik, M., Katiyar, R., Naik, S., Kumar, D., Maji, D., Shukla, A., Nannaware, A.D., Kalra, A., Rout, P.K.: Novel process for isolation of major bio-polymers from Mentha arvensis distilled biomass and saccharification of the isolated cellulose to glucose. Ind. Crops Prod. 119, 1–8 (2018)

    Article  Google Scholar 

  6. Shah, A.K., Maitlo, G., Korai, R.M., Unar, I.N., Shah, A.A., Khan, H.A., Shah, S.F.A., Ismail, U., Park, Y.H.: Citronellal cyclisation to isopulegol over micro-mesoporous ZSM-5 zeolite: effects of desilication temperature on textural and catalytic properties. React. Kinet. Mech. Catal. 128, 507–522 (2019)

    Article  Google Scholar 

  7. Guo, Y., Gaczyński, P., Becker, K.D., Kemnitz, E.: Sol-Gel synthesis and characterisation of nanoscopic FeF3-MgF2 heterogeneous catalysts with bi-acidic properties. ChemCatChem 5, 2223–2232 (2013)

    Article  Google Scholar 

  8. Mäki-Arvela, P., Kumar, N., Nieminen, V., Sjöholm, R., Salmi, T., Murzin, D.Y.: Cyclization of citronellal over zeolites and mesoporous materials for production of isopulegol. J. Catal. 225, 155–169 (2004)

    Article  Google Scholar 

  9. Itoh, H., Maeda, H., Yamada, S., Hori, Y., Mino, T., Sakamoto, M.: Highly selective aluminium-catalysed intramolecular Prins reaction for l-menthol synthesis. RSC Adv. 6, 61619–61623 (2014)

    Article  Google Scholar 

  10. Rout, P.K., Rao, Y.R., Naik, S.: Liquid CO2 extraction of Murraya paniculata Linn. flowers. Ind Crops Prod. 32, 338–342 (2010)

    Article  Google Scholar 

  11. Adams, R.P.: Identification of Essential Oil by Gas Chromatography/Mass Spectroscopy. Allured Publishing, Carol Stream (2007)

    Google Scholar 

  12. Sharma, R., Umapathy, G.R., Kumar, P., Ojha, S., Gargari, S., Joshi, R., Chopra, S., Kanjilal, D.: Ams and upcoming geochronology facility at inter university accelerator centre (IUAC), New Delhi, India. Nucl. Instrum. Methods Phys. Res. B. 438, 124–130 (2019)

    Article  Google Scholar 

  13. Arevalo, S.F.-J., Martinez, I.G., Garcia, L.A., Maldonado, R.M.-T., Leon, M.G.: The 14C determination in different bio-based products. Nucl. Instrum. Methods Phys. Res. B 361, 354–357 (2015)

    Article  Google Scholar 

  14. ASTM D6866-16, ASTM International: Standard test methods for determining the biobased content of solid, liquid, and gaseous samples using radiocarbon analysis. https://doi.org/10.1520/D6866-16 (2016).

  15. Ramezani, H., Azizi, S.N., Hosseini, S.R.: NaY zeolite as a platform for preparation of Ag nanoparticles arrays in order to construction of H2O2 sensor. Sens. Actuators B 248, 571–579 (2017)

    Article  Google Scholar 

  16. Treacy, M.M.J., Higgins, J.B.: Collection of SimulatAed XRD Powder Patterns for Zeolites, 5th edn., pp. 477–485. Elsevier, Amsterdam (2007)

    Google Scholar 

  17. Meng, B., Ren, S., Liu, X., Zhang, L., Hu, Q., Wang, J., Guo, Q., Shen, B.: Synthesis of USY zeolite with a high mesoporous content by introducing Sn and enhanced catalytic performance. Ind. Eng. Chem. Res. 59, 5712–5719 (2020)

    Article  Google Scholar 

  18. Robson, H., Lillerud, K.P.: Verified Synthesis of Zeolitic Materials, 2nd edn., p. 265. Elsevier Science B.V, Amsterdam (2001)

    Google Scholar 

  19. Zhou, N., Polavarapu, L., Wang, Q., Xu, Q.H.: Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency. ACS Appl. Mater. Interfaces. 7–8, 4844–4850 (2015)

    Article  Google Scholar 

  20. Pal, P., Das, J.K., Das, N., Bandyopadhyay, S.: Synthesis of NaP zeolite at room temperature and short crystallization time by sonochemical method. Ultrason. Sonochem. 20, 314–321 (2013)

    Article  Google Scholar 

  21. Parveen, M., Ahmad, F., Malla, A.M., Azaz, S.: SiO2-H3BO3 promoted solvent-free, green and sustainable synthesis of bioactive 1-substituted-1-H-tetrazole analogues. New J. Chem. 39, 2028–2041 (2015)

    Article  Google Scholar 

  22. Liao, J., Zhang, Y., Fan, L., Chang, L., Bao, W.: Insight into the acid sites over modified NaY zeolite and their adsorption mechanisms for thiophene and benzene. Ind. Eng. Chem. Res. 58, 4572–4580 (2019)

    Article  Google Scholar 

  23. Ranoux, A., Djanashvili, K., Arends, I.W., Hanefeld, U.: B-TUD-1: a versatile mesoporous catalyst. RSC Adv. 3, 21524–21534 (2013)

    Article  Google Scholar 

  24. Guan, F.F., Ma, T.T., Yuan, X., Zeng, H.Y., Wu, J.: Sn-modified NaY zeolite catalysts prepared by post-synthesis methods for Baeyer-Villiger oxidation. Catal. Lett. 148, 443–453 (2018)

    Article  Google Scholar 

  25. Ali, S.A., Almulla, F.M., Jermy, B.R., Aitani, A.M., Abudawoud, R.H., AlAmer, M., Qureshi, Z.S., Mohammad, T., Alasiri, H.S.: Hierarchical composite catalysts of MCM-41 on zeolite Beta for conversion of heavy reformate to xylenes. J. Ind. Eng. Chem. Res. 98, 189–199 (2021)

    Article  Google Scholar 

  26. Hammond, C., Padovan, D., Al-Nayili, A., Wells, P.P., Gibson, E.K., Dimitratos, N.: Identification of active and spectator Sn sites in Sn-β following solid-state stannation, and consequences for Lewis acid catalysis. ChemCatChem 7(20), 3322–3331 (2015)

    Article  Google Scholar 

  27. Vrbková, E., Šteflová, B., Zapletal, M., Vyskočilová, E., Červený, L.: Tungsten oxide-based materials as effective catalysts in isopulegol formation by intramolecular Prins reaction of citronellal. Res. Chem. Intermed. 46, 4047–4059 (2020)

    Article  Google Scholar 

  28. Fatimah, I., Rubiyanto, D., Huda, T.: Effect of sulfation on zirconia-pillared montmorillonite to the catalytic activity in microwave-assisted citronellal conversion. Int. J. Chem. Eng. (2014). https://doi.org/10.1155/2014/950190

    Article  Google Scholar 

  29. Fatimah, I., Rubiyanto, D., Prakoso, N.I., Yahya, A., Sim, Y.L.: Green conversion of citral and citronellal using tris (bipyridine) ruthenium (II)-supported saponite catalyst under microwave irradiation. Sustain. Chem. Pharm. 11, 61–70 (2019)

    Article  Google Scholar 

  30. Vrbková, E., Prejza, T., Lhotka, M., Vyskočilová, E., Červený, L.: Fe-modified zeolite BETA as an active catalyst for intramolecular prins cyclization of citronellal. Catal. Lett. 151, 1993–2003 (2021)

    Article  Google Scholar 

  31. Bertero, N.M., Trasarti, A.F., Acevedo, M.C., Marchi, A.J., Apesteguia, C.R.: Solvent effects in solid acid-catalyzed reactions: The case of the liquid-phase isomerization/cyclization of citronellal over SiO2-Al2O3. Mol. Catal. 481, 110192 (2020)

    Article  Google Scholar 

  32. Vajglová, Z., Simakova, I.L., Eränen, K., Mäki-Arvela, P., Kumar, N., Peurla, M., Tolvanen, S., Efimov, A., Hupa, L., Peltonen, J., Murzin, D.Y.: The physicochemical and catalytic properties of clay extrudates in cyclization of citronellal. Appl. Catal. A. 629, 118426 (2022)

    Article  Google Scholar 

  33. Ribeiro, M.S., Pinto, R.R., da Silva Rocha, K.A., Vieira, C.G.: Sulfonated expanded polystyrene waste promotes the (+)-citronellal cyclization reaction: a sustainable alternative process for biomass valorization. Waste Biomass Valoriz. 12(8), 4695–4702 (2021)

    Article  Google Scholar 

  34. Braga, P.R.S., Costa, A., de Freitas, E.F., Rocha, R.O., de Macedo, J.L., Araujo, A.S., Dias, J., Dias, S.C.L.: Intramolecular cyclization of (+)-citronellal using supported 12-tungstophosphoric acid on MCM-41. J. Mol. Catal. A. 358, 99–105 (2012)

    Article  Google Scholar 

  35. Muller, P., Wolf, P., Hermans, I.: Insights into the complexity of heterogeneous liquid-phase catalysis: case study on the cyclization of citronellal. ACS Catal. 6, 2760–2769 (2016)

    Article  Google Scholar 

  36. Shah, A.K., Park, S., Khan, H.A., Bhatti, U.H., Kumar, P., Bhutto, A.W., Park, Y.H.: Citronellal cyclisation over heteropoly acid supported on modified montmorillonite catalyst: effects of acidity and pore structure on catalytic activity. Res. Chem. Intermed. 44(4), 2405–2423 (2018)

    Article  Google Scholar 

  37. Azkaar, M., Arvela, P.M., Vajglová, Z., Fedorov, V., Kumar, N., Hupa, L., Hemming, J., Peurla, M., Ahoa, A., Murzin, D.Y.: Synthesis of menthol from citronellal over supported Ru- and Pt-catalysts in continuous flow. React. Chem. Eng. 4, 2156 (2019)

    Article  Google Scholar 

  38. Gupta, M., Kumar, P., Sharma, P.K., Chanotiya, C.S., Mohapatra, P., Rout, P.K.: Valorization of monoterpene hydrocarbon fraction of essential oil to high-value oxygenated monoterpenoids by solvent-free catalytic modification using 1%Pd-β-Zeolite. Waste Biomass Valoriz. (2022). https://doi.org/10.1007/s12649-022-01726-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Science and Engineering Research Board (SERB), DST, India (CRG/2021/002525) for research funding. We are grateful to Director, CSIR-CIMAP, Lucknow for providing the necessary facility under Aroma Mission, Phase-II (HCP 0007). Authors are thankful to IUAC for extending the AMS facility (Beam time Ref: IUAC/XIII.3A/66117) for 14C funded by the Ministry of Earth Science (MoES), Govt. of India with reference numbers MoES/16/07/11(i)-RDEAS and MoES/P.O.(Seismic)8(09)-Geochron/2012. Authors acknowledge the Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay for composites HRTEM analysis. 

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Priyabrat Mohapatra or Prasant Kumar Rout.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2632 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Chanotiya, C.S., Bawitlung, L. et al. Exploitation of Liquid CO2 Based Greener Process for Valorization of Citronellal-Rich Essential Oils Into Flavor Grade (−)-Menthol Using Novel Sn/Al-B-NaYZE Composites. Waste Biomass Valor 14, 1551–1569 (2023). https://doi.org/10.1007/s12649-022-01984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01984-7

Keyword

Navigation