Skip to main content

Advertisement

Log in

Bioconversion of Fish Scales and Feather Wastes by Bacillus sp. CL18 to Obtain Protease and Bioactive Hydrolysates

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This study explored diverse substrates/co-substrates to optimize protease production by Bacillus sp. CL18, and examined bioactivities in optimized medium.

Methods

Protease production was assessed using a one-variable-at-a-time approach. Twelve substrates (10 g/L) were initially tested, and the best one was evaluated at 10–50 g/L. Subsequently, 12 co-substrates were added, and then the best one was investigated (1–20 g/L). Proteolytic activity was measured in culture supernatants at days (d) 0–6, using azocasein. In vitro bioactivity assays involved radical-scavenging and Fe2+-chelating abilities, and the inhibition of dipeptidyl peptidase-IV (DPP-IV) and angiotensin-I converting enzyme (ACE).

Results

Ground fish scales (FS; 10 g/L) yielded increased protease production (360 U/mL; d4), which was 8–92% higher than other substrates. With FS, higher protease yield (496 U/mL; d4) was observed at 30 g/L (FS30). Among the co-substrates (1 g/L) added to FS30, milled feathers (MF) were the best one (670 U/mL; d4). Finally, highest protease production (780 U/mL; d4) was detected with 5 g/L MF (MF5). After optimization (FS30 + MF5), production was 216% of that with 10 g/L FS. Regarding antioxidant activities, radical-scavenging and Fe2+-chelating capacities in FS30 + MF5 increased from 31.7 to 3.0% (d0) to 77.2 and 55.3% (d4), respectively. In vitro DPP-IV-inhibiting (antidiabetic) and ACE-inhibiting (antihypertensive) activities reached 65.0–73.0% (d1–4) and 71.2% (d4), as compared to 8.3% and 28.7% (d0), respectively.

Conclusion

A low-cost waste-based medium was developed for protease production. Co-production of bioactive hydrolysates further contributes to the valorization of fish scales and feathers, representing a promising bioprocess from a circular economy perspective.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or used during the study appear in the submitted article.

References

  1. Singh, S., Bajaj, B.K.: Potential application spectrum of microbial proteases for clean and green industrial production. Energy Ecol. Environ. 2, 370–386 (2017). https://doi.org/10.1007/s40974-017-0076-5

    Article  Google Scholar 

  2. Danilova, I., Sharipova, M.: The practical potential of Bacilli and their enzymes for industrial production. Front. Microbiol. 11, 1782 (2020). https://doi.org/10.3389/fmicb.2020.01782

    Article  Google Scholar 

  3. Gaonkar, S.K., Furtado, I.J.: Valorization of low-cost agro-wastes residues for the maximum production of protease and lipase haloextremozymes by Haloferax lucentensis GUBF-2 MG076078. Process. Biochem. 101, 72–88 (2021). https://doi.org/10.1016/j.procbio.2020.10.019

    Article  Google Scholar 

  4. Kasana, R.C., Salwan, R., Yadav, S.K.: Microbial proteases: detection, production, and genetic improvement. Crit. Rev. Microbiol. 37, 262–276 (2011). https://doi.org/10.3109/1040841X.2011.577029

    Article  Google Scholar 

  5. Akram, F., Haq, I., Jabbar, Z.: Production and characterization of a novel thermo- and detergent stable keratinase from Bacillus sp. NKSP-7 with perceptible applications in leather processing and laundry industries. Int. J. Biol. Macromol. 164, 371–383 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.146

    Article  Google Scholar 

  6. Armada, C.D., Simora, R.M.C.: Optimization and functional properties of a protease from a fish gut isolate Pseudomonas sp. PD14 grown on fish processing wastes substrate. Philipp. J. Sci. 151, 95–105 (2022)

    Google Scholar 

  7. Sahoo, A., Mahanty, B., Daverey, A., Dutta, K.: Nattokinase production from Bacillus subtilis using cheese whey: effect of nitrogen supplementation and dynamic modelling. J. Water Process. Eng. 38, 101533 (2020). https://doi.org/10.1016/j.jwpe.2020.101533

    Article  Google Scholar 

  8. Emran, M.A., Ismail, S.A., Hashem, A.M.: Production of detergent stable thermophilic alkaline protease by Bacillus licheniformis ALW1. Biocatal. Agric. Biotechnol. 26, 101631 (2020). https://doi.org/10.1016/j.bcab.2020.101631

    Article  Google Scholar 

  9. He, F., Chao, J., Yang, D., Zhang, X., Yang, C., Xu, Z., Jiewei, T., Yongqiang, T.: Optimization of fermentation conditions for production of neutral metalloprotease by Bacillus subtilis SCK6 and its application in goatskin-dehairing. Prep. Biochem. Biotechnol. (2021). https://doi.org/10.1080/10826068.2021.1995413

    Article  Google Scholar 

  10. Rojas, L.F., Zapata, P., Ruiz-Tirado, L.: Agro-industrial waste enzymes: perspectives in circular economy. Curr. Opin. Green. Sustain. Chem. 34, 100585 (2022). https://doi.org/10.1016/j.cogsc.2021.100585

    Article  Google Scholar 

  11. Callegaro, K., Brandelli, A., Daroit, D.J.: Beyond plucking: feathers bioprocessing into valuable protein hydrolysates. Waste Manag. 95, 399–415 (2019). https://doi.org/10.1016/j.wasman.2019.06.040

    Article  Google Scholar 

  12. Ghorbel-Bellaaj, O., Maalej, H., Nasri, M., Jellouli, K.: Fermented shrimp waste hydrolysates: promising source of functional molecules with antioxidant properties. J. Culin. Sci. Technol. 16, 357–377 (2018). https://doi.org/10.1080/15428052.2017.1394950

    Article  Google Scholar 

  13. Cavello, I., Bezus, B., Cavalitto, S.: The keratinolytic bacteria Bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities. J. Genet. Eng. Biotechnol. 19, 107 (2021). https://doi.org/10.1186/s43141-021-00207-1

    Article  Google Scholar 

  14. Zou, Y., Tortorella, E., Robbens, J., Heyndrickx, M., Debode, J., De Pascale, D., Raes, K.: Bioactivity screening of hydrolysates from brown crab processing side streams fermented by marine Pseudoalteromonas strains. Waste Biomass Valoriz. 12, 2459–2468 (2021). https://doi.org/10.1007/s12649-020-01195-y

    Article  Google Scholar 

  15. Martí-Quijal, F.J., Tornos, A., Príncep, A., Luz, C., Meca, G., Tedeschi, P., Ruiz, M.J., Barba, F.J.: Impact of fermentation on the recovery of antioxidant bioactive compounds from sea bass byproducts. Antioxidants 9, 239 (2020). https://doi.org/10.3390/antiox9030239

    Article  Google Scholar 

  16. Moayedi, A., Mora, L., Aristoy, M.C., Hashemi, M., Safari, M., Toldrá, F.: ACE-inhibitory and antioxidant activities of peptide fragments obtained from tomato processing by-products fermented using Bacillus subtilis: effect of amino acid composition and peptides molecular mass distribution. Appl. Biochem. Biotechnol. 181, 48–64 (2017). https://doi.org/10.1007/s12010-016-2198-1

    Article  Google Scholar 

  17. Ramírez, K., Pineda-Hidalgo, K.V., Rochín-Medina, J.J.: Fermentation of spent coffee grounds by Bacillus clausii induces release of potentially bioactive peptides. LWT 138, 110685 (2021). https://doi.org/10.1016/j.lwt.2020.110685

    Article  Google Scholar 

  18. Sobucki, L., Ramos, R.F., Daroit, D.J.: Protease production by the keratinolytic Bacillus sp. CL18 through feather bioprocessing. Environ. Sci. Pollut. Res. 24, 23125–23132 (2017). https://doi.org/10.1007/s11356-017-9876-6

    Article  Google Scholar 

  19. Callegaro, K., Welter, N., Daroit, D.J.: Feathers as bioresource: Microbial conversion into bioactive protein hydrolysates. Process. Biochem. 75, 1–9 (2018). https://doi.org/10.1016/j.procbio.2018.09.002

    Article  Google Scholar 

  20. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951). https://doi.org/10.1016/0304-3894(92)87011-4

    Article  Google Scholar 

  21. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  Google Scholar 

  22. Zhang, Y., Chen, R., Ma, H., Chen, S.: Isolation and identification of dipeptidyl peptidase IV-inhibitory peptides from trypsin/chymotrypsin-treated goat milk casein hydrolysates by 2D-TLC and LC-MS/MS. J. Agric. Food Chem. 63, 8819–8828 (2015). https://doi.org/10.1021/acs.jafc.5b03062

    Article  Google Scholar 

  23. Cushman, D.W., Cheung, H.S.: Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20, 1637–1648 (1971). https://doi.org/10.1016/0006-2952(71)90292-9

    Article  Google Scholar 

  24. De Freitas, A.C., Escaramboni, B., Carvalho, A.F.A., De Lima, V.M.G., De Oliva-Neto, P.: Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose. Chem. Pap. 68, 442–450 (2014). https://doi.org/10.2478/s11696-013-0466-x

  25. Casarin, F., Cladera-Olivera, F., Brandelli, A.: Use of poultry byproduct for production of keratinolytic enzymes. Food Bioprocess. Technol. 1, 301–305 (2008). https://doi.org/10.1007/s11947-008-0091-9

    Article  Google Scholar 

  26. Daroit, D.J., Corrêa, A.P.F., Brandelli, A.: Production of keratinolytic proteases through bioconversion of feather meal by the Amazonian bacterium Bacillus sp. P45. Int. Biodeterior. Biodegrad. 65, 45–51 (2011). https://doi.org/10.1016/j.ibiod.2010.04.014

    Article  Google Scholar 

  27. Riffel, A., Daroit, D.J., Brandelli, A.: Nutritional regulation of protease production by the feather-degrading bacterium Chryseobacterium sp. kr6. Nat. Biotechnol. 28, 153–157 (2011). https://doi.org/10.1016/j.nbt.2010.09.008

    Article  Google Scholar 

  28. Mukherjee, A.K., Rai, S.K.: A statistical approach for the enhanced production of alkaline protease showing fibrinolytic activity from a newly isolated Gram-negative Bacillus sp. strain AS-S20-I. Nat. Biotechnol. 28, 182–189 (2011). https://doi.org/10.1016/j.nbt.2010.11.003

    Article  Google Scholar 

  29. Baqueiro-Peña, I., Asaff-Torres, A., Kirchmayr, M.R., Valenzuela-Soto, E.M., Zamora, A.: Biotechnological potential of bacteria isolated from cattle environments of desert soils in Sonora Mexico. World J. Microbiol. Biotechnol. 35, 4 (2019). https://doi.org/10.1007/s11274-018-2574-9

    Article  Google Scholar 

  30. Thys, R.C.S., Guzzon, S.O., Cladera-Olivera, F., Brandelli, A.: Optimization of protease production by Microbacterium sp. in feather meal using response surface methodology. Process. Biochem. 41, 67–73 (2006). https://doi.org/10.1016/j.procbio.2005.03.070

    Article  Google Scholar 

  31. Joo, H.S., Chang, C.S.: Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process. Biochem. 40, 1263–1270 (2005). https://doi.org/10.1016/j.procbio.2004.05.010

    Article  Google Scholar 

  32. Karbalaei-Heidari, H.R., Amoozegar, M.A., Hajighasemi, M., Ziaee, A.A., Ventosa, A.: Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis. J. Ind. Microbiol. Biotechnol. 36, 21–27 (2009). https://doi.org/10.1007/s10295-008-0466-y

    Article  Google Scholar 

  33. Lermen, A.M., Clerici, N.J., Borchartt Maciel, D., Daroit, D.J.: Characterization and application of a crude bacterial protease to produce antioxidant hydrolysates from whey protein. Prep. Biochem. Biotechnol. (2022). https://doi.org/10.1080/10826068.2022.2033997

    Article  Google Scholar 

  34. Clowers, B.H., Wunschel, D.S., Kreuzer, H.W., Engelmann, H.E., Valentine, N., Wahl, K.L.: Characterization of residual medium peptides from Yersinia pestis cultures. Anal. Chem. 85, 3933–3939 (2013). https://doi.org/10.1021/ac3034272

    Article  Google Scholar 

  35. Adigüzel, A.C., Bitlisli, B.O., Yaşa, I., Eriksen, N.T.: Sequential secretion of collagenolytic, elastolytic, and keratinolytic proteases in peptide-limited cultures of two Bacillus cereus strains isolated from wool. J. Appl. Microbiol. 107, 226–234 (2009). https://doi.org/10.1111/j.1365-2672.2009.04200.x

    Article  Google Scholar 

  36. Xie, F., Feng, F., Liu, D., Quan, S., Liu, L., Zhang, X., Chen, G.: Bacillus amyloliquefaciens 35 M can exclusively produce and secrete proteases when cultured in soybean-meal-based medium. Colloids Surf. B Biointerfaces 209, 112188 (2022). https://doi.org/10.1016/j.colsurfb.2021.112188

    Article  Google Scholar 

  37. Delgado-García, M., Flores-Gallegos, A.C., Kirchmayr, M., Rodríguez, J.A., Mateos-Díaz, J.C., Aguilar, C.N., Muller, M., Camacho-Ruíz, R.M.: Bioprospection of proteases from Halobacillus andaensis for bioactive peptide production from fish muscle protein. Electron. J. Biotechnol. 39, 52–60 (2019). https://doi.org/10.1016/j.ejbt.2019.03.001

    Article  Google Scholar 

  38. Kalaikumari, S.S., Vennila, T., Monika, V., Chandraraj, K., Gunasekaran, P., Rajendhran, J.: Bioutilization of poultry feather for keratinase production and its application in leather industry. J. Clean. Prod. 208, 44–53 (2019). https://doi.org/10.1016/j.jclepro.2018.10.076

    Article  Google Scholar 

  39. Hammami, A., Bayoudh, A., Hadrich, B., Abdelhedi, O., Jridi, M., Nasri, M.: Response-surface methodology for the production and the purification of a new H2O2-tolerant alkaline protease from Bacillus invictae AH1 strain. Biotechnol. Prog. 36, e2965 (2020). https://doi.org/10.1002/btpr.2965

    Article  Google Scholar 

  40. Harikrishna, N., Mahalakshmi, S., Kiran Kumar, K., Reddy, G.: Fish scales as potential substrate for production of alkaline protease and amino acid rich aqua hydrolyzate by Bacillus altitudinis GVC11. Indian J. Microbiol. 57, 339–343 (2017). https://doi.org/10.1007/s12088-017-0664-2

    Article  Google Scholar 

  41. Coppola, D., Lauritano, C., Palma Esposito, F., Riccio, G., Rizzo, C., de Pascale, D.: Fish waste: from problem to valuable resource. Mar. Drugs. 19, 116 (2021). https://doi.org/10.3390/md19020116

    Article  Google Scholar 

  42. Matmaroh, K., Benjakul, S., Prodpran, T., Encarnacion, A.B., Kishimura, H.: Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus). Food Chem. 129, 1179–1186 (2011). https://doi.org/10.1016/j.foodchem.2011.05.099

    Article  Google Scholar 

  43. Rebecca, L.J., Sharmila, S., Das, M.P., Samuel, F.A.: Production and analysis of protease from Aspergillus niger using fish scales as substrate. J. Chem. Pharm. Res. 4, 4597–4600 (2012)

    Google Scholar 

  44. Pan, M.H., Tsai, M.L., Chen, W.M., Hwang, A., Pan, S., Hwang, B., Kuo, Y.R.: Purification and characterization of a fish scale-degrading enzyme from a newly identified Vogesella sp. J. Agric. Food Chem. 58, 12541–12546 (2010). https://doi.org/10.1021/jf1034042

    Article  Google Scholar 

  45. Bhagwat, P.K., Bhise, K.K., Bhuimbar, M.V., Dandge, P.B.: Use of statistical experimental methods for optimization of collagenolytic protease production by Bacillus cereus strain SUK grown on fish scales. Environ. Sci. Pollut Res. 25, 28226–28236 (2018). https://doi.org/10.1007/s11356-018-2859-4

    Article  Google Scholar 

  46. Nnolim, N.E., Mpaka, L., Okoh, A.I., Nwodo, U.U.: Biochemical and molecular characterization of a thermostable alkaline metallo-keratinase from Bacillus sp. Nnolim-k1. Microorganisms 8, 1304 (2020). https://doi.org/10.3390/microorganisms8091304

    Article  Google Scholar 

  47. Gioppo, N.M.R., Moreira-Gasparin, F.G., Costa, A.M., Alexandrino, A.M., De Souza, C.G.M., Peralta, R.M.: Influence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucaria in submerged and solid state cultures. J. Ind. Microbiol. Biotechnol. 36, 705–711 (2009). https://doi.org/10.1007/s10295-009-0540-0

    Article  Google Scholar 

  48. Daroit, D.J., Brandelli, A.: A current assessment on the production of bacterial keratinases. Crit. Rev. Biotechnol. 34, 372–384 (2014). https://doi.org/10.3109/07388551.2013.794768

    Article  Google Scholar 

  49. Basu, B.R., Banik, A.K., Das, M.: Production and characterization of extracellular protease of mutant Aspergillus niger AB100 grown on fish scale. World J. Microbiol. Biotechnol. 24, 449–455 (2008). https://doi.org/10.1007/s11274-007-9492-6

    Article  Google Scholar 

  50. Barbosa, J.B., Gentil, N.O., Ladeira, S.A., Martins, M.L.L.: Cheese whey and passion fruit rind flour as substrates for protease production by Bacillus sp. SMIA-2 strain isolated from Brazilian soil. Biocatal. Biotransform. 32, 244–250 (2014). https://doi.org/10.3109/10242422.2014.934363

    Article  Google Scholar 

  51. Clerici, N.J., Lermen, A.M., Daroit, D.J.: Agro-industrial by-products as substrates for the production of bacterial protease and antioxidant hydrolysates. Biocatal. Agric. Biotechnol. 37, 102174 (2021). https://doi.org/10.1016/j.bcab.2021.102174

    Article  Google Scholar 

  52. Hammami, A., Bayoudh, A., Abdelhedi, O., Nasri, M.: Low-cost culture medium for the production of proteases by Bacillus mojavensis SA and their potential use for the preparation of antioxidant protein hydrolysate from meat sausage by-products. Ann. Microbiol. 68, 473–484 (2018). https://doi.org/10.1007/s13213-018-1352-0

    Article  Google Scholar 

  53. Singh, S., Bajaj, B.K.: Agroindustrial/forestry residues as substrates for production of thermoactive alkaline protease from Bacillus licheniformis K-3 having multifaceted hydrolytic potential. Waste Biomass Valoriz. 8, 453–462 (2017). https://doi.org/10.1007/s12649-016-9577-2

    Article  Google Scholar 

  54. Martí-Quijal, F.J., Khubber, S., Remize, F., Tomasevic, I., Roselló-Soto, E., Barba, F.J.: Obtaining antioxidants and natural preservatives from food by-products through fermentation: a review. Fermentation. 7, 106 (2021). https://doi.org/10.3390/fermentation7030106

    Article  Google Scholar 

  55. Gulcin, Ä., Alwasel, S.H.: Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes. 10, 132 (2022). https://doi.org/10.3390/pr10010132

    Article  Google Scholar 

  56. Fontoura, R., Daroit, D.J., Correa, A.P.F., Meira, S.M.M., Mosquera, M., Brandelli, A.: Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities. Nat. Biotechnol. 31, 506–513 (2014). https://doi.org/10.1016/j.nbt.2014.07.002

    Article  Google Scholar 

  57. Yin, L.-J., Tong, Y.-L., Jiang, S.-T.: Improvement of the functionality of minced Mackerel by hydrolysis and subsequent lactic acid bacterial fermentation. J. Food Sci. 70, M172–M178 (2005)

    Article  Google Scholar 

  58. Ciurko, D., Łaba, W., Żarowska, B., Janek, T.: Enzymatic hydrolysis using bacterial cultures as a novel method for obtaining antioxidant peptides from brewers’ spent grain. RSC Adv. 11, 4688–4700 (2021). https://doi.org/10.1039/d0ra08830g

    Article  Google Scholar 

  59. Fang, B., Sun, J., Dong, P., Xue, C., Mao, X.: Conversion of turbot skin wastes into valuable functional substances with an eco-friendly fermentation technology. J. Clean. Prod. 156, 367–377 (2017). https://doi.org/10.1016/j.jclepro.2017.04.055

    Article  Google Scholar 

  60. Mhina, C.F., Jung, H.Y., Kim, J.K.: Recovery of antioxidant and antimicrobial peptides through the reutilization of Nile perch wastewater by biodegradation using two Bacillus species. Chemosphere 253, 126728 (2020). https://doi.org/10.1016/j.chemosphere.2020.126728

    Article  Google Scholar 

  61. Lacroix, I.M.E., Li-Chan, E.C.Y.: Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation - Current knowledge and future research considerations. Trends Food Sci. Technol. 54, 1–16 (2016). https://doi.org/10.1016/j.tifs.2016.05.008

    Article  Google Scholar 

  62. Martin, M., Deussen, A.: Effects of natural peptides from food proteins on angiotensin converting enzyme activity and hypertension. Crit. Rev. Food Sci. Nutr. 59, 1264–1283 (2019). https://doi.org/10.1080/10408398.2017.1402750

    Article  Google Scholar 

  63. Gao, J., Liu, Q., Zhao, L., Yu, J., Wang, S., Cao, T., Gao, X., Wei, Y.: Identification and antihypertension study of novel angiotensin I-converting enzyme inhibitory peptides from the skirt of Chlamys farreri fermented with Bacillus natto. J. Agric. Food Chem. 69, 146–158 (2021). https://doi.org/10.1021/acs.jafc.0c04232

    Article  Google Scholar 

  64. Gao, X., Yan, P., Wang, J., Liu, X., Yu, J.: Utilization of shrimp by-products by bioconversion with medical fungi for angiotensin I-converting enzyme inhibitor and antioxidant. J. Aquat. Food Prod. Technol. 25, 694–707 (2016). https://doi.org/10.1080/10498850.2014.919550

    Article  Google Scholar 

  65. Nahariah, N., Legowo, A.M., Abustam, E., Hintono, A.: Angiotensin I-converting enzyme inhibitor activity on egg albumen fermentation. Asian Aust J. Anim. Sci. 28, 855–861 (2015). https://doi.org/10.5713/ajas.14.0419

    Article  Google Scholar 

  66. Tacias-Pascacio, V.G., Castañeda-Valbuena, D., Morellon-Sterling, R., Tavano, O., Berenguer-Murcia, Ã., Vela-Gutiérrez, G., Rather, I.A., Fernandez-Lafuente, R.: Bioactive peptides from fisheries residues: a review of use of papain in proteolysis reactions. Int. J. Biol. Macromol. 184, 415–428 (2021). https://doi.org/10.1016/j.ijbiomac.2021.06.076

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) for the Post-graduation scholarship (DS-CAPES) granted to B. S. Bernardo, and also to Universidade Federal da Fronteira Sul (UFFS, Brazil) for the Scientific Initiation scholarship (PIBIC-UFFS) granted to B. W. Kopplin.

Funding

This work was supported by Universidade Federal da Fronteira Sul (UFFS), under grant PES-2020-0264 (Edital No. 270/GR/UFFS/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Joner Daroit.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Bernardo, B., Kopplin, B.W. & Daroit, D.J. Bioconversion of Fish Scales and Feather Wastes by Bacillus sp. CL18 to Obtain Protease and Bioactive Hydrolysates. Waste Biomass Valor 14, 1045–1056 (2023). https://doi.org/10.1007/s12649-022-01907-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01907-6

Keywords

Navigation