Skip to main content
Log in

Valorization of Saffron Tepals for the Green Synthesis of Silver Nanoparticles and Evaluation of Their Efficiency Against Foodborne Pathogens

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The aim of this study was the preparation of silver nanoparticles (AgNPs) using saffron tepal extract (STE), one of the most abundant by-products of the saffron industry, and evaluation of their antimicrobial activity and efficiency in the removal of foodborne pathogenic biofilms. Synthesized AgNPs were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). According to FE-SEM images, the size of AgNPs was about 20–30 nm with a spherical morphology. XRD spectra revealed some characteristic peaks for AgNPs indicating face-centered cubic lattice and a crystalline structure. FTIR spectra approved functional interactions between saffron secondary metabolites and AgNPs. Microbial strains showed little or no susceptibility to STE, but green synthesized AgNPs showed effective antimicrobial activity against foodborne pathogens. The minimum inhibitory concentration values of AgNPs ranged from 320 to 1280 mg/L which were more effective against Staphylococcus aureus and Pseudomonas aeruginosa. The highest Zone of inhibition (16 mm) at 2560 mg/L of AgNPs was recorded for Candida albicans. The AgNPs successfully prevented the biofilm formation of investigated pathogens. Bio-preparation of AgNPs from STE proved to have a high potential for antimicrobial applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Mzabri, I., Addi, M., Berrichi, A.: Traditional and modern uses of saffron (Crocus sativus). Cosmetic. 6(4), 1–11 (2019)

    Article  Google Scholar 

  2. Gahruie, H.H., Parastouei, K., Mokhtarian, M., Rostami, H., Niakousari, M., Mohsenpour, Z.: Application of innovative processing methods for the extraction of bioactive compounds from saffron (Crocus sativus) petals. J. Appl. Res. Med. Aromat. Plants. 19, 100264 (2020)

    Google Scholar 

  3. Kakouri, E., Daferera, D., Paramithiotis, S., Astraka, K., Drosinos, E.H., Polissiou, M.G.: Crocus sativus L. tepals: the natural source of antioxidant and antimicrobial factors. J. Appl. Res. Med. Aromat. Plants 4, 66–74 (2017)

    Google Scholar 

  4. Sánchez-Vioque, R., Rodríguez-Conde, M.F., Reina-Ureña, J.V., Escolano-Tercero, M.A., Herraiz-Peñalver, D., Santana-Méridas, O.: In vitro antioxidant and metal chelating properties of corm, tepal and leaf from saffron (Crocus sativus L.). Ind Crops Prod. 39, 149–153 (2012)

    Article  Google Scholar 

  5. Cardone, L., Castronuovo, D., Perniola, M., Cicco, N., Candido, V.: Saffron (Crocus sativus L.), the king of spices: an overview. Sci. Hortic. 272, 109560 (2020)

    Article  Google Scholar 

  6. Caser, M., Demasi, S., Stelluti, S., Donno, D., Scariot, V.: Crocus sativus L. Cultivation in alpine environments: stigmas and tepals as source of bioactive compounds. Agronomy 10(10), 1473 (2020)

    Article  Google Scholar 

  7. Abou El-Nour, K.M., Eftaiha, A.A., Al-Warthan, A., Ammar, R.A.: Synthesis and applications of silver nanoparticles. Arab. J. Chem. 3(3), 135–140 (2010)

    Article  Google Scholar 

  8. Chellapandian, C., Ramkumar, B., Puja, P., Shanmuganathan, R., Pugazhendhi, A., Kumar, P.: Gold nanoparticles using red seaweed Gracilaria verrucosa: green synthesis, characterization and biocompatibility studies. Process Biochem. 80, 58–63 (2019)

    Article  Google Scholar 

  9. Bakkiyaraj, D., Pandian, S.: Biofilm inhibition by nanoparticles. In: Rumbaugh, K.P., Ahmad, I. (eds.) Antibiofilm Agents, pp. 385–406. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Pugazhendhi, A., Prabhu, R., Muruganantham, K., Shanmuganathan, R., Natarajan, S.: Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J. Photochem. 190, 86–97 (2019)

    Google Scholar 

  11. Varadavenkatesan, T., Lyubchik, E., Pai, S., Pugazhendhi, A., Vinayagam, R., Selvaraj, R.: Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. J. Photochem. 199, 111621 (2019)

    Google Scholar 

  12. Balayssac, S., Trefi, S., Gilard, V., Malet-Martino, M., Martino, R., Delsuc, M.A.: 2D and 3D DOSY 1H NMR, a useful tool for analysis of complex mixtures: application to herbal drugs or dietary supplements for erectile dysfunction. J. Pharm. Biomed. Anal. 50(4), 602–612 (2009)

    Article  Google Scholar 

  13. Vishnudas, D., Mitra, B., Sant, S.B., Annamalai, A.: Green-synthesis and characterization of silver nanoparticles by aqueous leaf extracts of Cardiospermum helicacabum leaves. Drug Invent. Today 4(2), 340–344 (2012)

    Google Scholar 

  14. Neethirajan, S., Jayas, D.S.: Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 4(1), 39–47 (2011)

    Article  Google Scholar 

  15. Thomas, R., Nair, A.P., Soumya, K.R., Mathew, J., Radhakrishnan, E.K.: Antibacterial activity and synergistic effect of biosynthesized AgNPs with antibiotics against multidrug-resistant biofilm-forming coagulase-negative staphylococci isolated from clinical samples. Appl. Biochem. Biotechnol. 173(2), 449–460 (2014)

    Article  Google Scholar 

  16. Mahdieh, M., Zolanvari, A., Azimee, A.S., Mahdieh, M.: Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci. Iran. 19(3), 926–929 (2012)

    Article  Google Scholar 

  17. Kashyap, M., Samadhiya, K., Ghosh, A., Anand, V., Shirage, P.M., Bala, K.: Screening of microalgae for biosynthesis and optimization of Ag/AgCl nano hybrids having antibacterial effect. RSC Adv. 9, 25583 (2019)

    Article  Google Scholar 

  18. Aldayel, M.F., Al Kuwayti, M.A., El Semary, N.A.H.: Investigating the production of antimicrobial nanoparticles by Chlorella vulgaris and the link to its loss of viability. Microorganisms 10(145), 1–13 (2022)

    Google Scholar 

  19. Suman, T.Y., Rajasree, S.R., Kanchana, A., Elizabeth, S.B.: Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf. B 106, 74–78 (2013)

    Article  Google Scholar 

  20. Pourmortazavi, S.M., Taghdiri, M., Makari, V., Rahimi-Nasrabadi, M.: Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim. Acta A 136, 1249–1254 (2015)

    Article  Google Scholar 

  21. Zhang, L., Wei, Y., Wang, H., Wu, F., Zhao, Y., Liu, X., Wu, H., Wang, L., Su, H.: Green synthesis of silver nanoparticles using mushroom Flammulina velutipes extract and their antibacterial activity against aquatic pathogens. Food Bioprocess Technol. 13(11), 1908–1917 (2020)

    Article  Google Scholar 

  22. Gheidar, H., Haddadi, A., Kalani, B.S., Amirmozafari, N.: Nanoparticles impact the expression of the genes involved in biofilm formation in S. aureus, a model antimicrobial-resistant species. J. Med. Bacteriol. 7(3–4), 30–41 (2018)

    Google Scholar 

  23. Gilbert, P., McBain, A.J.: Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin. Microbiol. Rev. 16(2), 189–208 (2003)

    Article  Google Scholar 

  24. Giaouris, E., Chorianopoulos, N., Skandamis, P., Nychas, G.J.: Attachment and biofilm formation by Salmonella in food processing environments. In: Mahmoud B.S. (eds.) Salmonella: A Dangerous Foodborne Pathogen, pp. 157–180. BoD–Books on Demand (2012)

  25. Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., Ciofu, O.: Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. 35(4), 322–332 (2010)

    Article  Google Scholar 

  26. Barraud, N., Kelso, M., Rice, S., Kjelleberg, S.: Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr. Pharm. Des. 21(1), 31–42 (2015)

    Article  Google Scholar 

  27. Donlan, R.M., Costerton, J.W.: Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15(2), 167–193 (2002)

    Article  Google Scholar 

  28. Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, S.L., Jones, J.L., Griffin, P.M.: Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis. 17(1), 7–15 (2011)

    Article  Google Scholar 

  29. Singh, H., Du, J., Singh, P., Yi, T.H.: Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif. Cells Nanomed. Biotechnol. 46(6), 1163–1170 (2018)

    Article  Google Scholar 

  30. Ali, S.G., Ansari, M.A., Khan, H.M., Jalal, M., Mahdi, A.A., Cameotra, S.S.: Antibacterial and antibiofilm potential of green synthesized silver nanoparticles against imipenem resistant clinical isolates of P. aeruginosa. Bionanoscience 8(2), 544–553 (2018)

    Article  Google Scholar 

  31. Mie, R., Samsudin, M.W., Din, L.B., Ahmad, A., Ibrahim, N., Adnan, S.N.A.: Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int. J. Nanomed. 9, 121–127 (2014)

    Google Scholar 

  32. Ojo, O.A., Oyinloye, B.E., Ojo, A.B., Afolabi, O.B., Peters, O.A., Olaiya, O., Fadaka, A., Jonathan, J., Osunlana, O.: Green synthesis of silver nanoparticles (AgNPs) using Talinum triangulare (Jacq.) Willd. leaf extract and monitoring their antimicrobial activity. J. Bionanosci. 11(4), 292–296 (2017)

    Article  Google Scholar 

  33. Manikprabhu, D., Lingappa, K.: Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. J. Pharm. Res. 6(2), 255–260 (2013)

    Google Scholar 

  34. Bhakya, S., Muthukrishnan, S., Sukumaran, M., Muthukumar, M.: Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 6(5), 755–766 (2016)

    Article  Google Scholar 

  35. Mensor, L.L., Menezes, F.S., Leitão, G.G., Reis, A.S., Santos, T.C.D., Coube, C.S., Leitão, S.G.: Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 15(2), 127–130 (2001)

    Article  Google Scholar 

  36. Sathiyavimal, S., Vasantharaj, S., Bharathi, D., Saravanan, M., Manikandan, E., Kumar, S.S., Pugazhendhi, A.: Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. J. Photochem. Photobiol. B 188, 126–134 (2018)

    Article  Google Scholar 

  37. Maiti, S., Krishnan, D., Barman, G., Ghosh, S.K., Laha, J.: K: Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J. Anal. Sci. Technol. 5(1), 40 (2014)

    Article  Google Scholar 

  38. Jalal, M., Ansari, M.A., Shukla, A.K., Ali, S.G., Khan, H.M., Pal, R., Alam, J., Cameotra, S.S.: Green synthesis and antifungal activity of Al2O3 NPs against fluconazole-resistant Candida spp. isolated from a tertiary care hospital. RSC Adv. 6(109), 107577–107590 (2016)

    Article  Google Scholar 

  39. Stepanović, S., Vuković, D., Dakić, I., Savić, B., Švabić-Vlahović, M.: A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 40(2), 175–179 (2000)

    Article  Google Scholar 

  40. Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T., Mohan, N.J.C.S.B.B.: Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B 76(1), 50–56 (2010)

    Article  Google Scholar 

  41. Philip, D., Unni, C.: Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Physica E 43(7), 1318–1322 (2011)

    Article  Google Scholar 

  42. Berti, G.: EN 13925-1 Non-destructive Testing-X-ray Diffraction from Polycrystalline and Amorphous Material-Part 1: General Principles (2008)

  43. Shriniwas, P.P., Subhash, T.K.: Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem. Biophys. Rep. 10, 76–81 (2017)

    Google Scholar 

  44. Keshari, A.K., Srivastava, R., Singh, P., Yadav, V.B., Nath, G.: Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum octurnum. J. Ayurveda Integr. Med. 11(1), 37–44 (2020)

    Article  Google Scholar 

  45. Shameli, K., Bin Ahmad, M., Jaffar Al-Mulla, E.A., Ibrahim, N.A., Shabanzadeh, P., Rustaiyan, A., Abdollahi, Y., Bagheri, S., Abdolmohammadi, S., Sani Usman, M., Zidan, M.: Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules 17(7), 8506–8517 (2012)

    Article  Google Scholar 

  46. Abdel-Aziz, M.S., Shaheen, M.S., El-Nekeety, A.A., Abdel-Wahhab, M.A.: Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J. Saudi Chem. Soc. 18, 356–366 (2014)

    Article  Google Scholar 

  47. Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., Mozafari, M.R.: Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2), 1–17 (2018)

    Article  Google Scholar 

  48. Schulz, H., Baranska, M.: Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 43(1), 13–25 (2007)

    Article  Google Scholar 

  49. Huang, J., Lin, L., Sun, D., Chen, H., Yang, D., Li, Q.: Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev. 44(17), 6330–6374 (2015)

    Article  Google Scholar 

  50. Zhao, X., Zhao, F., Wang, J., Zhong, N.: Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Adv. 7(58), 36670–36683 (2017)

    Article  Google Scholar 

  51. Logaranjan, K., Raiza, A.J., Gopinath, S.C., Chen, Y., Pandian, K.: Shape-and size-controlled synthesis of silver nanoparticles using Aloe vera plant extract and their antimicrobial activity. Nanoscale Res. Lett. 11(1), 1–9 (2016)

    Article  Google Scholar 

  52. Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S.: A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7(1), 17–28 (2016)

    Article  Google Scholar 

  53. Vijayaraghavan, K., Nalini, S.K., Prakash, N.U., Madhankumar, D.: One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids Surf. B 94, 114–117 (2012)

    Article  Google Scholar 

  54. Dakal, T.C., Kumar, A., Majumdar, R.S., Yadav, V.: Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 7, 1831 (2016)

    Article  Google Scholar 

  55. Khalandi, B., Asadi, N., Milani, M., Davaran, S., Abadi, A.J.N., Abasi, E., Akbarzadeh, A.: A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug Res. 11(02), 70–76 (2017)

    Google Scholar 

  56. Shanmuganathan, R., MubarakAli, D., Prabakar, D., Muthukumar, H., Thajuddin, N., Kumar, S.S., Pugazhendhi, A.: An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ. Sci. Pollut. 25(11), 10362–10370 (2018)

    Article  Google Scholar 

  57. Khorrami, S., Zarrabi, A., Khaleghi, M., Danaei, M., Mozafari, M.R.: Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomed. 13, 8013 (2018)

    Article  Google Scholar 

  58. Kalishwaralal, K., BarathManiKanth, S., Pandian, S.R.K., Deepak, V., Gurunathan, S.: Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B 79(2), 340–344 (2010)

    Article  Google Scholar 

  59. Martinez-Gutierrez, F., Boegli, L., Agostinho, A., Sánchez, E.M., Bach, H., Ruiz, F., James, G.: Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 29(6), 651–660 (2013)

    Article  Google Scholar 

  60. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., Galdiero, M.: Silver nanoparticles as potential antibacterial agents. Molecules 20(5), 8856–8874 (2015)

    Article  Google Scholar 

  61. Bagherzade, G., Tavakoli, M.M., Namaei, M.H.: Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac. J. Trop. Biomed. 7(3), 227–233 (2017)

    Article  Google Scholar 

  62. Mittal, A.K., Chisti, Y., Banerjee, U.C.: Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31(2), 346–356 (2013)

    Article  Google Scholar 

  63. Armijo, L.M., Wawrzyniec, S.J., Kopciuch, M., Brandt, Y.I., Rivera, A.C., Withers, N.J., Osiński, M.: Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J. Nanobiotechnol. 18(1), 1–27 (2020)

    Article  Google Scholar 

  64. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T., Yacaman, M.J.: The bactericidal effect of silver nanoparticles. Nanotechnology 16(10), 2346 (2005)

    Article  Google Scholar 

  65. Li, J., Rong, K., Zhao, H., Li, F., Lu, Z., Chen, R.: Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis. J. Nanosci. Nanotechnol. 13(10), 6806–6813 (2013)

    Article  Google Scholar 

  66. Brennan, S.A., Ní Fhoghlú, C., Devitt, B.M., Omahony, F.J., Brabazon, D., Walsh, A.: Silver nanoparticles and their orthopaedic applications. Bone Joint J. 97(5), 582–589 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Research and Technology Institute of Plant Production (RTIPP), the Shahid Bahonar University of Kerman for their financial support and grateful assistance in providing laboratory materials and facilities.

Funding

This research (No.T. 2/43/41) was financially supported by Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization and project administration were done by SK and SMJ. Material preparation, data collection and analysis were performed by APGY, AS, LKR, MN and MA. The first draft of the manuscript was written by SK and APGY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sepideh Khorasani or Seid Mahdi Jafari.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorasani, S., Ghandehari Yazdi, A.P., Saadatfar, A. et al. Valorization of Saffron Tepals for the Green Synthesis of Silver Nanoparticles and Evaluation of Their Efficiency Against Foodborne Pathogens. Waste Biomass Valor 13, 4417–4430 (2022). https://doi.org/10.1007/s12649-022-01791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01791-0

Keywords

Navigation