Skip to main content
Log in

Identification of Sterols from Anabasis articulata (Forssk.) Moq. (Chenopodiaceae) Growing in Algeria and Study of Their Potential Bioactivity

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Anabasis articulata (Forssk.) Moq. (Chenopodiaceae), also called Eshnan, Ajremor Berry bearing glasswort, is widely distributed in Syrian, Algerian, Jordan, Lebanon, Saudi Arabia, Egyptian and Iraqi desert, Spain (Alicante, Almería, Granada and Murcia provinces), Mauritania, Western Sahara and Morocco. Anabasis articulata is broadly used in folk medicine to treat diabetes, fever, eczema and kidney infections. The objective of this work was to examine the potential bioactivity of the plant, in vitro and in vivo experiment.

Methods

The sterol-rich extract was identified by GC/MS analysis. The antioxidant potential, anti-tyrosinase and antiproliferative activities, was evaluated by in vitro assays and anti-inflammatory function was determined by in vivo assay.

Results

The results revealed that the chromatographic analysis showed the presence of four sterols in the plant samples. A preliminary evaluation of the antiproliferative effect of A. articulata against two human tumor cell lines, MCF7 and MDA-MB 231, was evaluated by MTT assay. The plant extract was also subjected to four different in vitro antioxidant assays (i.e. total antioxidant capacity, reducing power, DPPH and β-carotene-linoleic acid bleaching). The sterol-rich extract also showed a high anti-tyrosinase activity, and an acetylcholinesterase inhibitory effect, and in vivo toxicological and anti-inflammatory function of A. articulata sterols was tested on rats with carrageenan-induced inflammatory paw edema.

Conclusions

All this evidence suggests the possible application of the aerial part of A. articulata as food additive, in pharmaceutical and cosmetic industries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Eddouks, M., Maghrani, M., Lemhadri, A., Ouahidi, M.L., Jouad, H.: Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the southeast region of Morocco (Tafilalet). J. Ethnopharmacol. 82(2–3), 97–103 (2002)

    Article  Google Scholar 

  2. Ozenda, P.: Flore et végétation du Sahara. 3ème édition, CNRS Editions, Paris (2004)

  3. Hammiche, V., Maiza, K.: Traditional medicine in Central: 89–94. Sahara: pharmacopoeia of Tassili N’ajjer. J. Ethnopharmacol. 105(3), 358–67 (2006)

    Article  Google Scholar 

  4. Kambouche, N., Merah, B., Derdour, A., Bellahouel, S., Bouayed, J., Dicko, A., Younos, C., Soulimani, R.: Hypoglycemic and antihyperglycemic effects of Anabasis articulata (Forssk) Moq (Chenopodiaceae), an Algerian medicinal plant. Afr. J. Biotechnol. 8(20), 5589–5594 (2009). https://doi.org/10.3732/ajb.0800079

    Article  Google Scholar 

  5. Begley, S.: Beyond vitamins. Newsweek 123, 45–49 (1994)

    Google Scholar 

  6. Benveniste, P.: Sterol biosynthesis. Annu. Rev. Plant Physiol. 37, 25–308 (1986)

    Article  Google Scholar 

  7. Turhan, B., Tayfu, N.P., Deniz, T., Otto, S., Hsan, Ç.: Triterpene saponins from Scabiosa rotata. Phytochemistry 48(5), 867–873 (1997)

    Google Scholar 

  8. Prieto, P., Pineda, M., Aguilar, M.: Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269(2), 337–341 (1999). https://doi.org/10.1006/abio.1999.4019

    Article  Google Scholar 

  9. Oyaizu, M.: Studies on products of browning reaction prepared from glucose amine. Jpn. J. Nutr. 44(6), 307–315 (1986). https://doi.org/10.5264/eiyogakuzashi.44.307

    Article  Google Scholar 

  10. Sanchez-Moreno, C., Larrauri, J.A., Saura-Calixto, F.: A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 76(2), 270–276 (1998)

    Article  Google Scholar 

  11. Moure, A., Franco, D., Sineiro, J., Dominguez, H., Nunez, M.J., Lema, G.M.: Evaluation of extracts from Gevuina avellana hulls as antioxidants. J. Agric. Food Chem. 48(9), 3890–3897 (2000)

    Article  Google Scholar 

  12. Chang, T.S.: An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 10(6), 2440–2475 (2009). https://doi.org/10.3390/ijms10062440

    Article  Google Scholar 

  13. Mroczek, T.: Highly efficient, selective and sensitive molecular screening of acetylcholinesterase inhibitors of natural origin by solid-phase extraction-liquid chromatography/electrospray ionisation-octopole-orthogonal acceleration time-of-flight-mass spectrometry and novel thinlayer chromatography-based bioautography. J. Chromatogr. A 1216(12), 2519–2528 (2009)

    Article  Google Scholar 

  14. Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M.: A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7(2), 88–95 (1961)

    Article  Google Scholar 

  15. Ingkaninan, K., de Best, C.M., van der Heijden, R., Hofte, A.J.P., Karabatak, B., Irth, H., Tjaden, U.R., van der Greef, J., Verpoorte, R.: High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J. Chromatogr. A 872(1–2), 61–73 (2000)

    Article  Google Scholar 

  16. Trovato, A., Raneri, E., Kouladis, M., Tzakou, O., Taviano, M.F., Galati, E.M.: Anti-inflammatory and analgesic activity of Hypericum empetrifolium Willd. (Guttiferae). Farmaco 56(5–7), 455–457 (2001)

    Article  Google Scholar 

  17. Belyagoubi-Benhammou, N., Belyagoubi, L., Gismondi, A., Di Marco, G., Canini, A., Atik-Bekkara, F.: GC/MS analysis, and antioxidant and antimicrobial activities of alkaloids extracted by polar and apolar solvents from the stems of Anabasis articulata. Med. Chem. Res. 28, 754–767 (2019). https://doi.org/10.1007/s00044-019-02332-6

    Article  Google Scholar 

  18. El Dine, R.S., Abdallah, H.M., Kandil, Z.A., Zaki, A., Khan, S., Khan, A.: PPARα and γ activation effects of new nor-triterpenoidal saponins from the aerial parts of Anabasis articulata. Planta Med. 85(4), 274–281 (2018)

    Google Scholar 

  19. Garcia-Llatas, G., Rodriguez-Estrada, M.T.: Current and new insights on phytosterol oxides in plant sterol-enriched food. Chem. Phys. Lipids 164(6), 607–624 (2011)

    Article  Google Scholar 

  20. Bouic, P., Clark, A., Lamprecht, J., Freestone, M., Pool, E., Liebenberg, R., Kotze, D., Van Jaarsveld, P.: The effects of B-sitosterol (BSS) and B-sitosterol glucoside (BSSG) mixture on selected immune parameters of marathon runners: inhibition of post marathon immune suppression and inflammation. Int. J. Sports Med. 20(4), 258–62 (1999)

    Article  Google Scholar 

  21. Awad, A., Chinnam, M., Fink, C., Bradford, P.: β-Sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine 14(11), 747–754 (2007)

    Article  Google Scholar 

  22. Kim, Y.S., Li, X.F., Kang, K.H., Ryu, B., Kim, S.K.: Stigmasterol isolated from marine microalgae Navicula incerta induces apoptosis in human hepatoma HepG2 cells. BMB Rep. 47(8), 433–438 (2014)

    Article  Google Scholar 

  23. Ali, H., Dixit, S., Ali, D., Alqahtani, S.M., Alkahtani, S., Alarifi, S.: Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma. Drug Des. Dev. Ther. 9, 2793–2800 (2015)

    Article  Google Scholar 

  24. Ayaz, M., Sadiq, A., Wadood, A., Junaid, M., Ullah, F., Zaman Khan, N.: Cytotoxicity and molecular docking studies on phytosterols isolated from Polygonum hydropiper L. Steroids 141, 30–35 (2019). https://doi.org/10.1016/j.steroids.2018.11.005

    Article  Google Scholar 

  25. Metwally, N.S., Mohamed, A.M., ELSharabasy, F.S.: Chemical constituents of the Egyptian plant Anabasis articulata (Forssk) Moq and its antidiabetic effects on rats with streptozotocin-induced diabetic hepatopathy. J. Appl. Pharm. Sci. 2(4), 54–65 (2012)

    Google Scholar 

  26. Chai, J.W., Kuppusamy, U.R., Kanthimathi, M.S.: Beta-sitosterol induces apoptosis in MCF-7 cells. Malays. J. Biochem. Mol. Biol. 16(2), 28–30 (2008)

    Google Scholar 

  27. Saeidnia, S., Manayi, A., Ahmad, R., Gohari-Abdollahi, M.: The story of β-sitosterol—a review. Eur. J. Med. Plant 4(5), 590–609 (2014)

    Article  Google Scholar 

  28. Park, C., Moon, D.O., Rhu, C.H., Choi, B.T., Lee, W.H., Kim, G.Y., Choi, Y.H.: β-Sitosterol induces antiproliferation and apoptosis in human leukemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio. Biol. Pharm. Bull. 30(7), 1317–1323 (2007)

    Article  Google Scholar 

  29. Ju, Y.H., Clausen, L.M., Allred, K.F., Almada, A.L., Helferich, W.G.: β-Sitosterol, β-sitosterol glucoside, and a mixture of β-sitosterol and β-sitosterol glucoside modulate the growth of estrogen-responsive breast cancer cells in vitro and in ovariectomized athymic mice. J. Nutr. 134(5), 1145–1151 (2004)

    Article  Google Scholar 

  30. Awad, A., Downie, A.C., Fink, C.S.: Inhibition of growth and stimulation of apoptosis by beta-sitosterol treatment of MDA-MB-231 human breast cancer cells in culture. Int. J. Mol. Med. 5(5), 541–545 (2000). https://doi.org/10.3892/ijmm.5.5.541

    Article  Google Scholar 

  31. Manayi, A., Saeidnia, S., Ostad, S.N., Hadjiakhoondi, A., Shams Ardekani, M.R., Vazirian, M., Akhtar, Y., Khanavi, M.: Chemical constituents and cytotoxic effect of the main compounds of Lythrum salicaria L. Z. Naturforsch. 68(9–10), 367–375 (2013)

    Article  Google Scholar 

  32. Gupta, R., Sharma, A.K., Dobhal, M., Sharma, M., Gupta, R.: Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J. Diabetes 3(1), 29–37 (2011)

    Article  Google Scholar 

  33. Baskar, A.A., Al Numair, K.S., Paulraj, M.G., Alsaif, M.A., Al Muamar, M., Ignacimuthu, S.: β-Sitosterol prevents lipid peroxidation and improves antioxidant status and histoarchitecture in rats with 1,2-dimethylhydrazine-induced colon cancer. J. Med. Food 15(4), 335–343 (2012). https://doi.org/10.1089/jmf.2011.1780

    Article  Google Scholar 

  34. Vivancos, M., Moreno, J.J.: β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic. Biol. Med. 39(1), 91–7 (2005)

    Article  Google Scholar 

  35. Yoshida, Y., Niki, E.: Antioxidant effects of phytosterol and its components. J. Nutr. Sci. Vitaminol. 49, 277–280 (2003)

    Article  Google Scholar 

  36. Bozin, B., Mimica-Dukic, N., Samojlik, I., Goran, A., Igic, R.: Phenolic as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chem. 111(4), 925–929 (2008)

    Article  Google Scholar 

  37. Senhaji, S., Lamchouri, F., Toufik, H.: Phytochemical content, antibacterial and antioxidant potential of endemic plant Anabasis aretioïdes Coss. & Moq. (Chenopodiaceae). Biomed. Res. Int. 2020(6), 1–16 (2020)

    Article  Google Scholar 

  38. El-Haci, I., Atik-Bekkara, F., Mazari, W., Gherib, M.: Phenolics content and antioxidant activity of some organic extracts of endemic medicinal plant Anabasis aretioides Coss. & Moq. from Algerian Sahara. Pharmacogn. J. 5(3), 108–112 (2013)

    Article  Google Scholar 

  39. Shi, C., Wu, F., Zhu, X., Xu, J.: Incorporation of β-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor mediated PI3K/GSK3β signaling. Biochim. Biophys. Acta 1830(3), 2538–2544 (2013)

    Article  Google Scholar 

  40. Abdallah, H.M., Abdel-Naim, A.B., Ashour, O.M., Shehata, I.A., Abdel-Sattar, E.A.: Anti-inflammatory activity of selected plants from Saudi Arabia. Z. Naturforsch. C. J. Biosci. 69(1–2), 1–9 (2014)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabila Belyagoubi-Benhammou.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Menni, D., Belyagoubi-Benhammou, N., Benmahieddine, A. et al. Identification of Sterols from Anabasis articulata (Forssk.) Moq. (Chenopodiaceae) Growing in Algeria and Study of Their Potential Bioactivity. Waste Biomass Valor 13, 3283–3295 (2022). https://doi.org/10.1007/s12649-022-01717-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01717-w

Keywords

Navigation