Skip to main content
Log in

Vermiremediation of Urban and Agricultural Biomass Residues for Nutrient Recovery and Vermifertilizer Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Recovering the nutrients from organic solid residues is an ever demanding approach in terms of eco-friendly management. In this study, the efficiency of the earthworms, Perionyx ceylanensis and Perionyx excavatus in recycling and recovering plant nutrients from urban and agricultural biomass residues was investigated.

Methods

Vermicomposting of four different types of organic biomass resources in combination with cowdung (1:1) for 50 days was conducted using the earthworms, P. ceylanensis, and P. excavatus. Physico-chemical, microbiological and maturity characteristics of the final product were analyzed.

Results

Results showed a decrease in pH, organic matter content (OMC), total organic carbon (TOC), cellulose, lignin, carbon to nitrogen (C/N) and carbon to phosphorus (C/P) ratios, and an increase in total Kjeldahl nitrogen (TKN), phosphorus (TP), potassium (TP), calcium and sodium in vermicomposts over composts (prepared without earthworms). TKN increase in vermicomposts over composts was insignificant between P. ceylanensis and P. excavatus, while it was significant for TP, TK, and total microbial population (P < 0.05). The reduction of TOC, OMC, C/N, and C/P ratios were significantly higher in vermicomposts recovered from P. ceylanensis than P. excavatus. The results clearly indicated that physico-chemical and microbiological changes are dependent on the nature of organic resources and earthworm species used. The seed germination tests with black gram and sorghum showed that the vermicomposts were mature and non-phytotoxic.

Conclusion

P. ceylanensis is equally efficient in recovering nutrients from organic biomass residues to that of a widely used, P. excavatus. Therefore, both P. ceylanensis and P. excavatus are efficiently used for recovering nutrients from urban and agricultural biomass residues and for vermifertilizer production.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ghatak, T.K.: Municipal solid waste management in india: a few unaddressed issues. Proc. Environ. Sci. 35, 169–175 (2016). https://doi.org/10.1016/j.proenv.2016.07.071

    Article  Google Scholar 

  2. Gupta, N., Yadav, K.K., Kumar, V.: A review on current status of municipal solid waste management in India. J. Environ. Sci. (China). 37, 206–217 (2015). https://doi.org/10.1016/j.jes.2015.01.034

    Article  Google Scholar 

  3. AESA: Good Practices 22: Utilization of sugarcane trash for livestock feeding: An alternative to on-farm burning. Agricultural Extension in Sourth Asia, Hyderabad, India. pp.1–9. https://www.aesanetwork.org/utilization-of-sugarcane-trash-for-livestock-feeding-a. (2018)

  4. Sood, J.: Not a waste until wasted. Down to Earth, 17 August 2015, (2015)

  5. Gadde, B., Menke, C., Wassmann, R.: Rice straw as a renewable energy source in India, Thailand, and the Philippines: overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass Bioenerg. 33, 1532–1546 (2009). https://doi.org/10.1016/J.BIOMBIOE.2009.07.018

    Article  Google Scholar 

  6. Jusoh, M.L.C., Manaf, L.A., Latiff, P.A.: Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iran. J. Environ. Health Sci. Eng. 10, 17 (2013). https://doi.org/10.1186/1735-2746-10-17

    Article  Google Scholar 

  7. Ramnarain, Y.I., Ansari, A.A., Ori, L.: Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida. Int. J. Recycl. Org. Waste Agric. 8, 23–36 (2018). https://doi.org/10.1007/s40093-018-0225-7

    Article  Google Scholar 

  8. Kalyani, K.A., Pandey, K.K.: Waste to energy status in India: a short review. Renew. Sustain. Energy Rev. 31, 113–120 (2014). https://doi.org/10.1016/J.RSER.2013.11.020

    Article  Google Scholar 

  9. Bhattacharya, S.S., Kim, K.-H.: Utilization of coal ash: is vermitechnology a sustainable avenue? Renew. Sustain. Energy Rev. 58, 1376–1386 (2016). https://doi.org/10.1016/J.RSER.2015.12.345

    Article  Google Scholar 

  10. Yadav, A., Garg, V.K.: Biotransformation of bakery industry sludge into valuable product using vermicomposting. Bioresour. Technol. 274, 512–517 (2019). https://doi.org/10.1016/j.biortech.2018.12.023

    Article  Google Scholar 

  11. Bhat, S.A., Singh, S., Singh, J., Kumar, S., Bhawana, Vig, A.P.: Bioremediation and detoxification of industrial wastes by earthworms: vermicompost as powerful crop nutrient in sustainable agriculture. Bioresour. Technol. 252, 172–179 (2018)

    Article  Google Scholar 

  12. Ravindran, B., Lee, S.R., Chang, S.W., Nguyen, D.D., Chung, W.J., Balasubramanian, B., Mupambwa, H.A., Arasu, M.V., Al-Dhabi, N.A., Sekaran, G.: Positive effects of compost and vermicompost produced from tannery waste-animal fleshing on the growth and yield of commercial crop-tomato (Lycopersicon esculentum L.) plant. J. Environ. Manag. 234, 154–158 (2019). https://doi.org/10.1016/J.JENVMAN.2018.12.100

    Article  Google Scholar 

  13. Košnář, Z., Wiesnerová, L., Částková, T., Kroulíková, S., Bouček, J., Mercl, F., Tlustoš, P.: Bioremediation of polycyclic aromatic hydrocarbons (PAHs) present in biomass fly ash by co-composting and co-vermicomposting. J. Hazard. Mater. 369, 79–86 (2019). https://doi.org/10.1016/J.JHAZMAT.2019.02.037

    Article  Google Scholar 

  14. Soobhany, N.: Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production: a review. J. Clean. Prod. 241, 118413 (2019). https://doi.org/10.1016/j.jclepro.2019.118413

    Article  Google Scholar 

  15. Dominguez, J., Edwards, C.A.: Biology and ecology of earthworm species used for vermicomposting. In: Clive Edwards, A., Norman Arancon, Q., Sherman, Rhonda (eds.) Vermiculture Technology: Earthworms, Organic Wastes, and Environmental Management. CRC Press, Boca Raton (2010)

    Google Scholar 

  16. Kale, R.D., Bano, K., Krishnamoorthy, R.W.: Potential of Perionyx excavatus for utilizing organic wastes. Pedobiologia 23, 419–426 (1982)

    Google Scholar 

  17. Reinecke, A.J., Hallatt, L.: Growth and cocoon production of Perionyx excavatus (Oligochaeta). Biol. Fertil. Soils 8, 303–306 (1989). https://doi.org/10.1007/BF00263159

    Article  Google Scholar 

  18. Edwards, C.A., Dominguez, J., Neuhauser, E.F.: Growth and reproduction of Perionyx excavatus (Perr.) (Megascolecidae) as factors in organic waste management. Biol. Fertil. Soils 27, 155–161 (1998). https://doi.org/10.1007/s003740050414

    Article  Google Scholar 

  19. Hallatt, L., Reinecke, A.J., Viljoen, S.A.: Life cycle of the oriental compost worm Perionyx excavatus (Oligochaeta). S. Afr. J. Zool. 25, 41–45 (1990). https://doi.org/10.1080/02541858.1990.11448187

    Article  Google Scholar 

  20. Chaudhuri, P.S., Pal, T.K., Bhattacharjee, G., Dey, S.K.: Rubber leaf litters (Hevea brasiliensis, var RRIM 600) as vermiculture substrate for epigeic earthworms, Perionyx excavatus, Eudrilus eugeniae and Eisenia fetida: the 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia 47, 796–800 (2003). https://doi.org/10.1078/0031-4056-00261

    Article  Google Scholar 

  21. Suthar, S.: Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus (Perrier) during recycling of some agriculture wastes. Bioresour. Technol. 98, 1608–1614 (2007). https://doi.org/10.1016/J.BIORTECH.2006.06.001

    Article  Google Scholar 

  22. Suthar, S., Singh, S.: Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int. J. Environ. Sci. Technol. 5, 99–106 (2008). https://doi.org/10.1007/BF03326002

    Article  Google Scholar 

  23. Khwairakpam, M., Bhargava, R.: Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species. Bioresour. Technol. 100, 5846–5852 (2009). https://doi.org/10.1016/j.biortech.2009.06.038

    Article  Google Scholar 

  24. Deka, H., Deka, S., Baruah, C.K., Das, J., Hoque, S., Sarma, H., Sarma, N.S.: Vermicomposting potentiality of Perionyx excavatus for recycling of waste biomass of java citronella—An aromatic oil yielding plant. Bioresour. Technol. 102, 11212–11217 (2011). https://doi.org/10.1016/j.biortech.2011.09.102

    Article  Google Scholar 

  25. Hussain, N., Das, S., Goswami, L., Das, P., Sahariah, B., Bhattacharya, S.S.: Intensification of vermitechnology for kitchen vegetable waste and paddy straw employing earthworm consortium: assessment of maturity time, microbial community structure, and economic benefit. J. Clean. Produc. (2018). https://doi.org/10.1016/j.jclepro.2018.01.241

    Article  Google Scholar 

  26. Yuvaraj, A., Karmegam, N., Thangaraj, R.: Vermistabilization of paper mill sludge by an epigeic earthworm Perionyx excavatus: mitigation strategies for sustainable environmental management. Ecol. Eng. 120, 187–197 (2018). https://doi.org/10.1016/j.ecoleng.2018.06.008

    Article  Google Scholar 

  27. Ananthavalli, R., Ramadas, V., John Paul, J.A., Karunai Selvi, B., Karmegam, N.: Seaweeds as bioresources for vermicompost production using the earthworm, Perionyx excavatus (Perrier). Bioresour. Technol. 275, 394–401 (2019)

    Article  Google Scholar 

  28. Prakash, M., Karmegam, N.: Vermistabilization of pressmud using Perionyx ceylanensis Mich. Bioresour. Technol. 101, 8464–8468 (2010). https://doi.org/10.1016/j.biortech.2010.06.002

    Article  Google Scholar 

  29. John Paul, J.A., Karmegam, N., Daniel, T.: Municipal solid waste (MSW) vermicomposting with an epigeic earthworm Perionyx ceylanensis Mich. Bioresour. Technol. 102, 6769–6773 (2011). https://doi.org/10.1016/j.biortech.2011.03.089

    Article  Google Scholar 

  30. Karmegam, N., Daniel, T.: Growth, reproductive biology and life cycle of the vermicomposting earthworm, Perionyx ceylanensis Mich. (Oligochaeta: Megascolecidae). Bioresour. Technol. 100, 4790–4796 (2009). https://doi.org/10.1016/j.biortech.2009.05.004

    Article  Google Scholar 

  31. Karmegam, N., Daniel, T.: Investigating efficiency of Lampito mauritii (Kinberg) and Perionyx ceylanensis Michaelsen for vermicomposting of different types of organic substrates. Environmentalist. 29, 287–300 (2009). https://doi.org/10.1007/s10669-008-9195-z

    Article  Google Scholar 

  32. Soobhany, N., Mohee, R., Garg, V.K.: Recovery of nutrient from municipal solid waste by composting and vermicomposting using earthworm Eudrilus eugeniae. J. Environ. Chem. Eng. 3, 2931–2942 (2015). https://doi.org/10.1016/J.JECE.2015.10.025

    Article  Google Scholar 

  33. Walkley, A., Black, I.A.: An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934). https://doi.org/10.1097/00010694-193401000-00003

    Article  Google Scholar 

  34. Tandon, H.Z.: Methods of Analysis of Soils, Plant Water and Fertilizers. Fertilizer Development and Consultation Organization, New Delhi (1993)

    Google Scholar 

  35. Chesson, A.: The maceration of linen flax under anaerobic conditions. J. Appl. Bacteriol. 45, 219–230 (1978). https://doi.org/10.1111/j.1365-2672.1978.tb04217.x

    Article  Google Scholar 

  36. Updegraff, D.M.: Utilization of cellulose from waste paper by Myrothecium verrucaria. Biotechnol. Bioeng. 13, 77–97 (1971). https://doi.org/10.1002/bit.260130106

    Article  Google Scholar 

  37. Subba Rao, N.S.: Soil Micro-organisms and Plant Growth. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi (1995)

    Google Scholar 

  38. Karmegam, N., Vijayan, P., Prakash, M., John Paul, J.A.: Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: a viable option for cleaner and enriched vermicompost production. J. Clean. Prod. 228, 718–728 (2019). https://doi.org/10.1016/j.jclepro.2019.04.313

    Article  Google Scholar 

  39. UAF: University of Alaska Fairbanks: Commercial agriculture development procedures for the wet towel germination test. FGV-00249; 5-91/DQ-TJ/400. (2010)

  40. Benech Arnold, R.L., Fenner, M., Edwards, P.J.: Changes in germinability, ABA content and ABA embryonic sensitivity in developing seeds of Sorghum bicolor (L.) Moench induced by water stress during grain filling. New Phytol. 118, 339–347 (1991)

    Article  Google Scholar 

  41. Ravindran, B., Contreras-Ramos, S.M., Sekaran, G.: Changes in earthworm gut associated enzymes and microbial diversity on the treatment of fermented tannery waste using epigeic earthworm Eudrilus eugeniae. Ecol. Eng. 74, 394–401 (2015). https://doi.org/10.1016/j.ecoleng.2014.10.014

    Article  Google Scholar 

  42. Sharma, K., Garg, V.K.: Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour. Technol. 250, 708–715 (2018). https://doi.org/10.1016/j.biortech.2017.11.101

    Article  Google Scholar 

  43. Lv, B., Zhang, D., Cui, Y., Yin, F.: Effects of C/N ratio and earthworms on greenhouse gas emissions during vermicomposting of sewage sludge. Bioresour. Technol. 268, 408–414 (2018). https://doi.org/10.1016/j.biortech.2018.08.004

    Article  Google Scholar 

  44. Yuvaraj, A., Karmegam, N., Tripathi, S., Kannan, S., Thangaraj, R.: Environment-friendly management of textile mill wastewater sludge using epigeic earthworms: bioaccumulation of heavy metals and metallothionein production. J. Environ. Manag. In press. (2019). https://doi.org/10.1016/j.jenvman.2019.109813

    Article  Google Scholar 

  45. Negi, R., Suthar, S.: Degradation of paper mill wastewater sludge and cow dung by brown-rot fungi Oligoporus placenta and earthworm (Eisenia fetida) during vermicomposting. J. Clean. Prod. 201, 842–852 (2018). https://doi.org/10.1016/j.jclepro.2018.08.068

    Article  Google Scholar 

  46. Ananthavalli, R., Ramadas, V., John Paul, J.A., Karunai Selvi, B., Karmegam, N.: Vermistabilization of seaweeds using an indigenous earthworm species, Perionyx excavatus (Perrier). Ecol. Eng. 130, 23–31 (2019). https://doi.org/10.1016/j.ecoleng.2019.02.001

    Article  Google Scholar 

  47. Parthasarathi, K., Balamurugan, M., Prashija, K.V., Jayanthi, L., Ameer Basha, S.: Potential of Perionyx excavatus (Perrier) in lignocellulosic solid waste management and quality vermifertilizer production for soil health. Int. J. Recycl. Org. Waste Agric. 5, 65–86 (2016). https://doi.org/10.1007/s40093-016-0118-6

    Article  Google Scholar 

  48. Prashija, K.V., Parthasarathi, K.: Management of agroindustrial lignocellulosic wastes through vermitechnology and production of agronomic valid vermicompost. Int. J. Biotechnol. Wellness Ind. 5, 153–167 (2016). https://doi.org/10.6000/1927-3037.2016.05.04.5

    Article  Google Scholar 

  49. Biruntha, M., Karmegam, N., Archana, J., Karunai Selvi, B., John Paul, J.A., Balamuralikrishnan, B., Chang, S.W., Ravindran, B.: Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. Bioresour. Technol. (2019). https://doi.org/10.1016/j.biortech.2019.122398

    Article  Google Scholar 

  50. Chen, Y., Chang, S.K.C., Chen, J., Zhang, Q., Yu, H.: Characterization of microbial community succession during vermicomposting of medicinal herbal residues. Bioresour. Technol. 249, 542–549 (2018). https://doi.org/10.1016/j.biortech.2017.10.021

    Article  Google Scholar 

  51. Abbasi, S.A., Hussain, N., Tauseef, S.M., Abbasi, T.: A novel FLippable Units vermireactor train system—FLUVTS—for rapidly vermicomposting paper waste to an organic fertilizer. J. Clean. Prod. 198, 917–930 (2018). https://doi.org/10.1016/j.jclepro.2018.07.040

    Article  Google Scholar 

  52. Arancon, N.Q., Pant, A., Radovich, T., Hue, N.V., Potter, J.K., Converse, C.E.: Seed germination and seedling growth of tomato and lettuce as affected by vermicompost water extracts (teas). HortScience 47, 1722–1728 (2012). https://doi.org/10.21273/HORTSCI.47.12.1722

    Article  Google Scholar 

  53. Lazcano, C., Sampedro, L., Zas, R., Domínguez, J.: Vermicompost enhances germination of the maritime pine (Pinus pinaster Ait.). New For. 39, 387–400 (2010). https://doi.org/10.1007/s11056-009-9178-z

    Article  Google Scholar 

  54. Khatua, C., Sengupta, S., Krishna Balla, V., Kundu, B., Chakraborti, A., Tripathi, S.: Dynamics of organic matter decomposition during vermicomposting of banana stem waste using Eisenia fetida. Waste Manage. 79, 287–295 (2018). https://doi.org/10.1016/j.wasman.2018.07.043

    Article  Google Scholar 

Download references

Acknowledgements

The first author, Dr. M. Biruntha, thankfully acknowledges RUSA Scheme Phase 2.0 grant [F-24-51/2014–U, Policy (TNMulti-Gen), Dept of Edn., Govt. of India, dated 09.10.2018] for supporting the work. The authors duly acknowledge Dr. (Mrs.) Thilagavathy Daniel, Professor (Retd.), Department of Biology, The Gandhigram Rural Institute (Deemed University), Gandhigram, Tamil Nadu, India for going through the manuscript and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natchimuthu Karmegam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biruntha, M., Mariappan, P., Karunai Selvi, B. et al. Vermiremediation of Urban and Agricultural Biomass Residues for Nutrient Recovery and Vermifertilizer Production. Waste Biomass Valor 11, 6483–6497 (2020). https://doi.org/10.1007/s12649-019-00899-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00899-0

Keywords

Navigation