Skip to main content
Log in

Valorization of Garlic Crops Residues as Precursors of Cellulosic Materials

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This work evaluated residues of garlic crops from Colombia, as promising sources of cellulosic materials. We demonstrated an efficient re-engineering of the waste products to highly valuable cellulose materials as precursors of cellulosic derivatives suitable for functionalization. To study the feasibility of extracting cellulose from garlic raw fibers, the steam explosion technique was used along with mild chemical treatment. These processes included usual chemical procedures such as alkaline extraction, bleaching, and acid hydrolysis but with a mild concentration of the chemicals. The chemical constituents of the fiber in each processing step were determined by standard procedures. The extracted cellulose microfibers were characterized by Fourier Transform Infrared spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Powder X-ray Diffractometry (XRD), and Scanning Electron Microscope (SEM). The FTIR spectra, as well as XRD, TGA and SEM results, showed changes in the peaks corresponding to hemicelluloses and lignin, which were removed from the fiber surface because of the treatments. These promising results proved revalorization of garlic by-product to produce cellulose derivatives and its potential use as reinforcement in the preparation of useful composites.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mohammadi-Khoo, S., Moghadam P.N., Fareghi A.R., Movagharnezhad N.: Synthesis of a cellulose-based hydrogel network: characterization and study of urea fertilizer slow release. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.42935

    Article  Google Scholar 

  2. Bondeson, D., Mathew, A., Oksman, K.: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171–180 (2006)

    Google Scholar 

  3. Pinzón, R.H.: Los cultivos de cebolla y ajo en Colombia: Estado del arte y perspectivas. Rev. Colomb. Cienc. Hortícolas 3(1), 45–55 (2006)

    MathSciNet  Google Scholar 

  4. FAOSTAT: Garlic crops. https://www.fao.org/faostat/en/#data/QC (2016)

  5. Jayaramudu, J., Reddy, G., Varaprasad, K., Sadiku, E.R., SinhaRay, S., Varada Rajulu, A.: Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites. Carbohydr. Polym. 93, 622–627 (2013)

    Google Scholar 

  6. Reddy, J.P., Rhim, J.W.: Extraction and characterization of cellulose microfibers from agricultural wastes of onion and garlic. J. Nat. Fibers 15, 465–473 (2018)

    Google Scholar 

  7. Rhim, J.W., Reddy, J.P., Luo, X.: Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose 22(1), 407–420 (2015)

    Google Scholar 

  8. Papu, S., Singh, A., Jaivir, S., Sweta, S., Arya, A.M., Singh, B.R.: Effect of drying characteristics of garlic: a review. J. Food Process. Technol. 5(4), 318–324 (2014)

    Google Scholar 

  9. Buritica, C.P.: Plant diseases and distribution of crops in the tropics. ASCOLFI-Informa 20(2), 17–23 (1994)

    Google Scholar 

  10. Fritsch, R.M., Friesen, N.: Evolution, domestication and taxonomy. In: Allium Crop Science: Recent Advances. (2002). https://doi.org/10.1079/9780851995106.0005. ISBN: 9780851995106.

  11. The Editors of Encyclopædia Britannica. Onion. Encyclopaedia Britannica. https://www.britannica.com/plant/onion-plant (2016)

  12. Bhatnagar, A., Sain, M.: Processing of cellulose nanofiber-reinforced composites. J. Reinf. Plast. Compos. 24, 1259–1268 (2005)

    Google Scholar 

  13. Kian, L.K., Jawaid, M., Ariffin, H., Alothman, O.Y.: Isolation and characterization of microcrystalline cellulose from roselle fibers. Int. J. Biol. Macromol. 103, 931–940 (2017)

    Google Scholar 

  14. Lorenzo-Hernando, A., Martín-Juárez, J., Bolado-Rodríguez, S.: Study of steam explosion pretreatment and preservation methods of commercial cellulose. Carbohydr. Polym. 191, 234–241. (2018). https://doi.org/10.1016/j.carbpol.2018.03.021

    Article  Google Scholar 

  15. Kallel, F., Bettaieb, F., Khiari, R., García, A., Bras, J., Chaabouni, E.: Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind Crops Prod. 87, 287–296 (2016)

    Google Scholar 

  16. French, A.D., Santiago Cintrón, M.: Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20, 583–588 (2013)

    Google Scholar 

  17. Fareez, I.M., Ibrahim, N.A., Wan Yaacob, W.M.H., Mamat Razali, N.A., Jasni, A.H., Abdul Aziz, F.: Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching. Cellulose (2018). https://doi.org/10.1007/s10570-018-1878-0

    Article  Google Scholar 

  18. Deepa, B., Abraham, E., Cordeiro, N., Mozetic, M., Mathew, A.P., Oksman, K.: Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2), 1075–1090 (2015)

    Google Scholar 

  19. Abraham, E., Deepa, B., Pothan, L.A., Jacob, M., Thomas, S., Cvelbar, U.: Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydr. Polym. 86(4), 1468–1475 (2011)

    Google Scholar 

  20. Johar, N., Ahmad, I., Dufresne, A.: Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crops Prod. 37(1), 93–99 (2013)

    Google Scholar 

  21. Elanthikkal, S., Gopalakrishnapanicker, U., Varghese, S., Guthrie, J.T.: Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr. Polym. 80, 852–859 (2010)

    Google Scholar 

  22. Reddy, N., Yang, Y.: Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 46, 5494–5500 (2005)

    Google Scholar 

  23. Łojewska, J., Miśkowiec, P., Łojewski, T., Proniewicz, L.M.: Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab. 88, 512–520 (2005)

    Google Scholar 

  24. Nuruddin, M., Chowdhury, A., Haque, S.A., Rahman, M., Farhad, S.F., Jahan, M.S.: Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Cellul. Chem. Technol. 45(5–6), 347–354 (2011)

    Google Scholar 

  25. Ibrahim, M.M., Agblevor, F.A., El-Zawawy, W.K.: Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. BioResources 5(1), 397–418 (2010)

    Google Scholar 

  26. Kalita, R.D., Nath, Y., Ochubiojo, M.E., Buragohain, A.K.: Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids Surf. B 108, 85–89 (2013)

    Google Scholar 

  27. Trache, D., Hussin, M.H., HuiChuin, C.T., Sabar, S., Fazita, M.R.N., Taiwo, O.F.A.: Microcrystalline cellulose: isolation, characterization and bio-composites application: a review. Int. J. Biol. Macromol. 93, 789–804 (2016)

    Google Scholar 

  28. Alemdar, A., Sain, M.: Isolation and characterization of nanofibers from agricultural residues Wheat straw and soy hulls. Bioresour. Technol. 99(6), 1664–1671 (2008)

    Google Scholar 

  29. Zhao, J., Wei, Z., Feng, X., Miao, M., Sun, L., Cao, S., Shi, L., Fang, J.: Luminescent and transparent Nanopaper based on rare-earth up-converting nanoparticle grafted nanofibrillated cellulose derived from garlic skin. ACS Appl. Mater. Interfaces 6, 14945–14951 (2014)

    Google Scholar 

  30. Trache, D., Donnot, A., Khimeche, K., Benelmir, R., Brosse, N.: Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydr. Polym. 104, 223–230 (2014)

    Google Scholar 

  31. Sjöström, E.: Wood Chemistry: Fundamentals and Applications [Internet]. Wood Chemistry, pp 165–203. https://www.sciencedirect.com/science/article/pii/B9780080925899500127%5Cn https://books.google.com/books?id=Sv3xcS6eS5QC&pgis=1 (2014)

  32. Azubuike, C.P., Okhamafe, A.O.: Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int. J. Recycl. Org. Waste Agric. 1, 1–9 (2012)

    Google Scholar 

  33. Lee, C.M., Kafle, K., Belias, D.W., Park, Y.B., Glick, R.E., Haigler, C.H.: Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose 22(2), 971–989 (2015)

    Google Scholar 

  34. Hussin, M.H., Pohan, N.A., Garba, Z.N., Kassim, M.J., Rahim, A.A., Brosse, N.: Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. Int. J. Biol. Macromol. 92, 11–19 (2016)

    Google Scholar 

  35. Lu, P., Hsieh, L.Y.: Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr. Polym. 82(2), 229–236 (2010)

    Google Scholar 

  36. Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., Hai, Y.: Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym. 82(2), 329–336 (2011)

    Google Scholar 

  37. Bettaieb, F., Khiari, R., Dufresne, A., Mhenni, M.F., Belgacem, M.N.: Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr. Polym. 123, 99–104 (2015)

    Google Scholar 

  38. Segal, L., Creely, J.J., Martin, J., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text. Res. J. 29(10), 786–794 (1959)

    Google Scholar 

  39. Zhang, Y.H., Lynd, L.R.: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88(7), 797–824 (2004)

    Google Scholar 

  40. Fengel, D., Wegener, G.: Wood chemistry, ultrastructure, reactions. Wood Chem. Ultrastruct React. 23(11), 601–602 (1989)

    Google Scholar 

  41. Mwaikambo, L.Y., Ansell, M.P.: Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres. J. Mater. Sci. 41, 2483–2496 (2006)

    Google Scholar 

  42. Yue, Y., Han, G., Wu, Q.: Transitional properties of cotton fibers from cellulose I to cellulose II structure. BioResources 8, 6460–6471 (2013)

    Google Scholar 

  43. Malladi, R., Malladi, N., Robert, M., Elkoun, S.: Importance of agricultural and industrial waste in the field of nano cellulose and its recent industrial developments: a review. ACS Sustain. Chem. Eng. 5:2. doi: 10.1021/acssuschemeng.7b03437 (2018)

  44. Balakrishnan, P., Geethamma, V.G., Gopi, S., Thomas, M.G., Kunaver, M., Huskic, M., Kalarikkal, N., Volova, T., Rouxel, D., Thomas, S.: Thermal, biodegradation and theoretical perspectives on nanoscale confinement in starch/cellulose nanocomposite modified via green crosslinker. Int. J. Biol. Macromol. 134, 781–790 (2019)

    Google Scholar 

  45. Gassan, J., Bledzki, A.K.: Thermal degradation of flax and jute fibers. J Appl Polym Sci. 82(6), 1417–1422 (2001)

    Google Scholar 

  46. Shankar, S., Rim, J.-W.: Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydr. Polym. 135, 18–26 (2016)

    Google Scholar 

  47. Morán, J.I., Alvarez, V.A., Cyras, V.P., Vázquez, A.: Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1), 149–159 (2008)

    Google Scholar 

  48. Ren, H., Zhang, R., Wang, Q., Pan, H., Wang, Y.: Garlic root biomass as novel biosorbents for malachite green removal: parameter optimization, process kinetics and toxicity test. Chem. Res. Chin. Univ. 32, 647–654 (2016)

    Google Scholar 

  49. John, M.J., Anandjiwala, R.D.: Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym. Compos. 29, 187–207 (2008)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge GRUPO DE INVESTIGACION EN QUIMICA Y TECNOLOGIA DE ALIMENTOS, UPTC, Colombia, for helping with most of the analysis and beneficial discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar J. Medina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, L.M., Gorinstein, S., Medina, O.J. et al. Valorization of Garlic Crops Residues as Precursors of Cellulosic Materials. Waste Biomass Valor 11, 4767–4779 (2020). https://doi.org/10.1007/s12649-019-00799-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00799-3

Key words

Navigation