Skip to main content

Advertisement

Log in

Valorization of Palm-Oil Residues: Integrated Production of a Good Quality Bio-coal and Electricity via Torrefaction

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Energy valorization of empty fruit bunches (EFB), via torrefaction, was investigated to stablish the best process conditions and the energy balance of an integrated plant. Differential scanning calorimetry was used, for the first time, as a new and more accurate method to determine the heat involved in the torrefaction process. This technique showed that the torrefaction of EFB is an endothermal process. A new response variable energy gain (EG) was introduced as an alternative to the customarily used variable energy yield (EY). EG was definitely a better response variable because it makes a compromise between a high mass yield and a high heating values of the solid product. On the contrary, EY has a very strong and direct (lineal) correlation with the mass yield that overshadows the effect of the heating value. Results show that torrefaction is a promising technology for the sustainable valorization of EFB because it solves the disposal problem and gives a solid and renewable biofuel that can replace coal. Besides, an important amount of electricity can be co-produced. Energy balances showed that energy self-sufficiency can be achieved by tuning the torrefaction conditions as to obtain a gaseous by-product that is used as fuel to provide the energy required in the drying and torrefaction stages. Processing 100 ton/day of EFB (dry basis), at 300 °C and 60 min, produces 37 ton/day of bio-coal (similar to sub-bituminous coal) and 0.36 MW electricity that can be exported because the process is energy self- sufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EFB:

Oil palm empty fruit bunches

KS:

Kernel shell

MF:

Mesocarp fiber

FFB:

Oil palm fresh fruit bunches

MY:

Mass yield

EY:

Energy yield

EG:

Energy gain

Fe:

Free of extractives

References

  1. Castiblanco, C., Etter, A., Aide, T.M.: Oil palm plantations in Colombia: a model of future expansion. Environ. Sci. Policy 27, 172–183 (2013). https://doi.org/10.1016/j.envsci.2013.01.003

    Article  Google Scholar 

  2. Indexmundi: Palm oil production by country. http://www.indexmundi.com/agriculture/?commodity=palm-oil. Accessed 2 Feb 2018

  3. Fedepalma: Evolución histórica anual de Fruto Procesado en Colombia. http://sispa.fedepalma.org/sispaweb/default.aspx?Control=Pages/produccion. Accessed 2 Feb 2018

  4. Ramírez, N., Arévalo, A., Garcia-Nunez, J.A.: Inventario de la biomasa disponible en plantas de beneficio para su aprovechamiento y caracterización fisicoquímica de la tusa en Colombia. Palmas 36, 41–54 (2015)

    Google Scholar 

  5. Dominghetti, T.F., de Barros S., Soares Cleber Oliveira, A.T.M., Cancado, P.H.D.: Stomoxys calcitrans (Diptera: Muscidae) outbreaks: current situation and future outlook with emphasis on Brazil. Braz. J. Vet. Parasitol. 24, 387–395 (2015). https://doi.org/10.1590/S1984-29612015079

    Article  Google Scholar 

  6. Basu, P.: Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Elsevier Inc., London (2013)

    Google Scholar 

  7. Sabil, K.M., Aziz, M.a., Lal, B., Uemura, Y.: Effects of torrefaction on the physiochemical properties of oil palm empty fruit bunches, mesocarp fiber and kernel shell. Biomass Bioenergy 56, 351–360 (2013). https://doi.org/10.1016/j.biombioe.2013.05.015

    Article  Google Scholar 

  8. Pimchuai, A., Dutta, A., Basu, P.: Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels 24, 4638–4645 (2010). https://doi.org/10.1021/ef901168f

    Article  Google Scholar 

  9. Ramírez, N.E., Silva, A.S., Garzón, E.M., Yáñez, E.E.: Caracterización y manejo de subproductos del beneficio del fruto de palma de aceite. Boletín Técnico No. 30 30, 1–46 (2011). https://doi.org/10.5897/AJB11.3582

    Article  Google Scholar 

  10. Sukiran, M.A., Abnisa, F., Wan Daud, W.M.A., Abu Bakar, N., Loh, S.K.: A review of torrefaction of oil palm solid wastes for biofuel production. Energy Convers. Manag. 149, 101–120 (2017). https://doi.org/10.1016/j.enconman.2017.07.011

    Article  Google Scholar 

  11. Nhuchhen, D., Basu, P., Acharya, B.: A comprehensive review on biomass torrefaction. Int. J. Renew. Energy Biofuels 2014, 1–56 (2014). https://doi.org/10.5171/2014.506376

    Article  Google Scholar 

  12. Briceño, I., Valencia, J., Posso, M.: Potencial de generación de energía de la agroindustria de la palma de aceite en Colombia. PALMAS 36, 43–53 (2015)

    Google Scholar 

  13. Agar, D., Wihersaari, M.: Bio-coal, torrefied lignocellulosic resources—key properties for its use in co-firing with fossil coal—their status. Biomass Bioenergy 44, 107–111 (2012). https://doi.org/10.1016/j.biombioe.2012.05.004

    Article  Google Scholar 

  14. Arteaga-Pérez, L.E., Segura, C., Bustamante-García, V., Cápiro, O.G., Jiménez, R.: Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: focus on volatile evolution vs feasible temperatures. Energy 93, 1731–1741 (2015). https://doi.org/10.1016/j.energy.2015.10.007

    Article  Google Scholar 

  15. Felfli, F.F., Luengo, C.A., Suárez, J.A., Beatón, P.A.: Wood briquette torrefaction. Energy Sustain. Dev. 9, 19–22 (2005). https://doi.org/10.1016/S0973-0826(08)60519-0

    Article  Google Scholar 

  16. Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G.: Torrefaction of wood. Part 1. Weight loss kinetics. J. Anal. Appl. Pyrolysis 77, 28–34 (2006). https://doi.org/10.1016/j.jaap.2006.01.002

    Article  Google Scholar 

  17. Nam, S.B., Park, Y.S., Kim, D.J., Gu, J.H.: Torrefaction reaction characteristic of various biomass waste on pilot scale of torrefaction reaction system. Procedia Environ. Sci. 35, 890–894 (2016). https://doi.org/10.1016/j.proenv.2016.07.044

    Article  Google Scholar 

  18. Bridgeman, T.G., Jones, J.M., Shield, I., Williams, P.T.: Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87, 844–856 (2008). https://doi.org/10.1016/j.fuel.2007.05.041

    Article  Google Scholar 

  19. Aziz, M., Sabil, K., Uemura, Y., Ismail, L.: A study on torrefaction of oil palm biomass. J. Appl. Sci. 12, 1130–1135 (2012). https://doi.org/10.3923/jas.2012.1130.1135

    Article  Google Scholar 

  20. Bergman, P., Veringa, H.J.: Combined torrefaction and pelletisation, The TOP process. Report ECN-C–05–073 (2005)

  21. Yan, W., Hastings, J.T., Acharjee, T.C., Coronella, C.J., Vásquez, V.R.: Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels 24, 4738–4742 (2010). https://doi.org/10.1021/ef901273n

    Article  Google Scholar 

  22. Nanou, P., Carbo, M.C., Kiel, J.H.A.: Detailed mapping of the mass and energy balance of a continuous biomass torrefaction plant. Biomass Bioenergy 89, 67–77 (2015). https://doi.org/10.1016/j.biombioe.2016.02.012

    Article  Google Scholar 

  23. Bates, R.B., Ghoniem, A.F.: Biomass torrefaction: modeling of reaction thermochemistry. Bioresour. Technol. 134, 331–340 (2013). https://doi.org/10.1016/j.biortech.2013.01.158

    Article  Google Scholar 

  24. Granados, D.A., Velasquez, H.I., Chejne, F.: Energetic and exergetic evaluation of residual biomass in a torrefaction process. Energy 74, 181–189 (2014). https://doi.org/10.1016/j.energy.2014.05.046

    Article  Google Scholar 

  25. Ohliger, A., Förster, M., Kneer, R.: Torrefaction of beechwood: a parametric study including heat of reaction and grindability. Fuel 104, 607–613 (2013). https://doi.org/10.1016/j.fuel.2012.06.112

    Article  Google Scholar 

  26. Rath, J., Wolfinger, M.G., Steiner, G., Krammer, G., Barontini, F., Cozzani, V.: Heat of wood pyrolysis. Fuel 82, 81–91 (2003). https://doi.org/10.1016/S0016-2361(02)00138-2

    Article  Google Scholar 

  27. Sulaiman, M.H., Uemura, Y., Azizan, M.T.: Torrefaction of empty fruit bunches in inert condition at various temperature and time. Procedia Eng. 148, 573–579 (2016). https://doi.org/10.1016/j.proeng.2016.06.514

    Article  Google Scholar 

  28. Loh, S.K.: The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers. Manag. 141, 285–298 (2017). https://doi.org/10.1016/j.enconman.2016.08.081

    Article  Google Scholar 

  29. Uemura, Y., Sellappah, V., Hoai Thanh, T., Hassan, S., Tanoue, K.: Torrefaction of empty fruit bunches under biomass combustion gas atmosphere. Bioresour. Technol. (2017). https://doi.org/10.1016/j.biortech.2017.06.057

    Article  Google Scholar 

  30. Chin, K.L., H’ng, P.S., Go, W.Z., Wong, W.Z., Lim, T.W., Maminski, M., Paridah, M.T., Luqman, A.C.: Optimization of torrefaction conditions for high energy density solid biofuel from oil palm biomass and fast growing species available in Malaysia. Ind. Crops Prod. 49, 768–774 (2013). https://doi.org/10.1016/j.indcrop.2013.06.007

    Article  Google Scholar 

  31. Uemura, Y., Omar, W.N., Tsutsui, T., Yusup, S.B.: Torrefaction of oil palm wastes. Fuel. 90, 2585–2591 (2011). https://doi.org/10.1016/j.fuel.2011.03.021

    Article  Google Scholar 

  32. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of ash in biomass laboratory analytical procedure (LAP) issue date: 7/17/2005. p. 14 (2008)

  33. Sluiter, A., Hames, B., Ruiz, R.O., Scarlata, C., Sluiter, J., Templeton, D., Crocker D.: Determination of Structural Carbohydrates and Lignin in Biomass. Golden, National Renewable Energy Laboratory (2004)

    Google Scholar 

  34. Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987). https://doi.org/10.1351/pac198759020257

    Article  Google Scholar 

  35. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426 (1959)

    Article  Google Scholar 

  36. Gallego, L.J., Escobar, A., Peñuela, M., Peña, J.D., Rios, L.A.: King grass: a promising material for the production of second-generation butanol. Fuel 143, 399–403 (2015). https://doi.org/10.1016/j.fuel.2014.11.077

    Article  Google Scholar 

  37. Bridgeman, T.G., Jones, J.M.: Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87, 844–856 (2008). https://doi.org/10.1016/j.fuel.2007.05.041

    Article  Google Scholar 

  38. Nyakuma, B., Ahmad, A., Johari, A., Abdullah, T.A., Oladokun, O.: Torrefaction of pelletized oil palm empty fruit bunches. In: The 21st international symposium on alcohol fuels—21st ISAF. pp. 15–19 (2015)

  39. Smith, A.M., Ross, A.B.: Production of bio-coal, bio-methane and fertilizer from seaweed via hydrothermal carbonisation. Algal Res. 16, 1–11 (2016). https://doi.org/10.1016/j.algal.2016.02.026

    Article  Google Scholar 

  40. Li, J., Brzdekiewicz, A., Yang, W., Blasiak, W.: Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching. Appl. Energy. 99, 344–354 (2012). https://doi.org/10.1016/j.apenergy.2012.05.046

    Article  Google Scholar 

  41. Chang, S., Zhao, Z., Zheng, A., He, F., Huang, Z., Li, H.: Characterization of products from torrefaction of sprucewood and bagasse in an auger reactor. Energy Fuels 26, 7009–7017 (2012). https://doi.org/10.1021/ef301048a

    Article  Google Scholar 

  42. Chen, W.H., Liu, S.H., Juang, T.T., Tsai, C.M., Zhuang, Y.Q.: Characterization of solid and liquid products from bamboo torrefaction. Appl. Energy 160, 829–835 (2015). https://doi.org/10.1016/j.apenergy.2015.03.022

    Article  Google Scholar 

  43. Arteaga-Pérez, L.E., Grandón, H., Flores, M., Segura, C., Kelley, S.S.: Steam torrefaction of Eucalyptus globulus for producing black pellets: a pilot-scale experience. Bioresour. Technol. 238, 194–204 (2017). https://doi.org/10.1016/j.biortech.2017.04.037

    Article  Google Scholar 

  44. Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G.: Torrefaction of wood. Part 2. Analysis of products. J. Anal. Appl. Pyrolysis 77, 35–40 (2006). https://doi.org/10.1016/j.jaap.2006.01.001

    Article  Google Scholar 

  45. Faleeva, J.M., Sinelshchikov, V.A., Sytchev, G.A., Zaichenko, V.M.: Exothermic effect during torrefaction. J. Phys. Conf. Ser. (2018). https://doi.org/10.1088/1742-6596/946/1/012033

    Article  Google Scholar 

  46. European Biomass Association (AEBIOM): Report on conversion efficiency of biomass, version #2. (2015). http://www.basisbioenergy.eu/fileadmin/BASIS/D3.5_Report_on_conversion_efficiency_of_biomass.pdf. Accessed 10 Feb 2018

  47. Shankar Tumuluru, J., Sokhansanj, S., Hess, J.R., Wright, C.T., Boardman, R.D.: REVIEW: a review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 7, 384–401 (2011). https://doi.org/10.1089/ind.2011.7.384

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support provided by “Departamento Administrativo de Ciencia, Tecnología e Innovación-Colciencias”, “Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación, Francisco José de Caldas”, “Cementos Argos S.A.” and “Comité para el Desarrollo de la Investigación-CODI, Universidad de Antioquia”.

Author information

Authors and Affiliations

Authors

Contributions

LJG, SC, EM, LAR contributed equally in both the experiments and writing of this manuscript.

Corresponding author

Correspondence to Luis Alberto Rios.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallego, L.J., Cardona, S., Martínez, E. et al. Valorization of Palm-Oil Residues: Integrated Production of a Good Quality Bio-coal and Electricity via Torrefaction. Waste Biomass Valor 11, 2273–2284 (2020). https://doi.org/10.1007/s12649-018-0459-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0459-7

Keywords

Navigation