Skip to main content

Advertisement

Log in

Assessing Methane Emission and Economic Viability of Energy Exploitation in a Typical Sicilian Municipal Solid Waste Landfill

  • case study
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Sanitary landfills for municipal solid waste (MSW) represent one of the major anthropogenic source of GHGs emissions and are directly responsible of the climate changes we are facing nowadays. Indeed, the biodegradable organic matter of MSW undergoes anaerobic digestion producing the landfill gas (LFG), whose main components are CH4 and CO2. Therefore, biomethane energy exploitation in MSW landfills will reduce GHGs emission positively affecting the global warming. The aim of the present study was to assess the methane production in a Sicilian landfill by comparing the results from field measurements of methane emission and the estimates achieved by applying different mathematical models. A subsequent energetic/economic analysis was carried out based on the Italian incentive mechanisms. Two different scenarios were simulated for LFG valorization considering either internal combustion engines or micro gas turbines. The evaluation of the economic viability was performed by applying the classic models of the Net Present Value and Internal Rate of Return. The results of the present study showed that the LFG produced in the investigated landfill could be profitably used as energetic source and the economic income due to thermal and electrical energy valorization might positively contribute to the landfill management.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Intergovernmental Panel on Climate Change, IPCC.: Climate change 2014—synthesis report (2014), http://ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf. Accessed 24 Nov 2017

  2. Ishigaki, T., Yamada, M., Nagamori, M., Ono, Y., Inoue, Y.: Estimation of methane emission from whole waste landfill site using correlation between flux and ground temperature. Environ. Geol. 48, 845–853 (2005)

    Article  Google Scholar 

  3. Aronica, S., Bonanno, A., Piazza, V., Pignato, L., Trapani, S.: Estimation of biogas produced by landfill of Palermo, applying a Gaussian model. Waste Manag. 29, 233–239 (2009)

    Article  Google Scholar 

  4. Lee, U., Han, J., Wang, M.: Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways. J. Clean. Prod. 166, 335–342 (2017). https://doi.org/10.1016/j.jclepro.2017.08.016

    Article  Google Scholar 

  5. Du, M., Peng, C., Wang, X., Chen, H., Wang, M., Zhu, Q.: Quantification of methane emissions from municipal solid waste landfills in China during the past decade. Renew. Sustain. Energy Rev. 78, 272–279 (2017). https://doi.org/10.1016/j.rser.2017.04.082

    Article  Google Scholar 

  6. Huber-Humer, M., Gebert, J., Hilger, H.: Biotic system to mitigate landfill methane emissions. Waste Manag. 26(1), 33–46 (2008)

    Article  Google Scholar 

  7. Di Trapani, D., Di Bella, G., Viviani, G.: Uncontrolled methane emissions from a MSW landfill surface: influence of landfill features and side slope. Waste Manag. 33, 2108–2115 (2013)

    Article  Google Scholar 

  8. Scheutz, C., Pedersen, R.B., Petersen, P.H., Jørgensen, J.H.B., Ucendo, I.M.B., Mønster, J.G., Samuelsson, J., Kjeldsen, P.: Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manag. 34(7), 1179–1190 (2014)

    Article  Google Scholar 

  9. El-Fadel, M., Abi-Esber, L., Salhab, S.: Emission assessment at the Burj Hammoud inactive municipal landfill: viability of landfill gas recovery under the clean development mechanism. Waste Manag. 32(11), 2106–2114 (2012)

    Article  Google Scholar 

  10. Kumar, S., Nimchuk, N., Kumar, R., Zietsman, J., Ramani, T., Spiegelman, C., Kenney, M.: Specific model for the estimation of methane emission from municipal solid waste landfills in India. Bioresour. Technol. 216, 981–987 (2016)

    Article  Google Scholar 

  11. Aracil, C., Haro, P., Giuntoli, J., Ollero, P.: Proving the climate benefit in the production of biofuels from municipal solid waste refuse in Europe. J. Clean. Prod. 142, 2887–2900 (2017). https://doi.org/10.1016/j.jclepro.2016.10.181

    Article  Google Scholar 

  12. Malinauskaite, J., Jouhara, H., Czajczyńska, D., Stanchev, P., Katsou, E., Rostkowsk, P., Thorne, R.J., Colón, J., Ponsá, S., Al-Mansour, F., Anguilano, L., Krzyżyńska, R., López, I.C., Vlasopoulos, A., Spencer, N.: Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy (2017). https://doi.org/10.1016/j.energy.2017.11.128

    Google Scholar 

  13. ISPRA.: Italian Green House Gas Inventory 1990–2014, National Inventory Report 2016 (2016), http://www.isprambiente.gov.it/files/pubblicazioni/rapporti/NIR2016_ITALY.pdf. Accessed 24 Nov 2017

  14. Lohila, A., Laurila, T., Tuovinen, J.P., Aurela, M., Hatakka, J., Thum, T., Pihlatie, M., Rinne, J., Vesala, T.: Micrometeorological measurements of methane and carbon dioxide fluxes at a municipal landfill. Environ. Sci. Technol. 41(8), 2717–2722 (2007)

    Article  Google Scholar 

  15. De Gioannis, G., Muntoni, A., Cappai, G., Milia, S.: Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Manag. 29(3), 1026–1034 (2009)

    Article  Google Scholar 

  16. Cucchiella, F., D’Adamo, I., Gastaldi, M.: Sustainable waste management: waste to energy plant as an alternative to landfill. Energy Convers. Manag. 131, 18–31 (2017)

    Article  Google Scholar 

  17. Directive 2008/98/EC on waste and repealing certain directives. Official Journal of the European Union, L 312/3–30 (22.11.08)

  18. Bove, R., Lunghi, P.: Electric power generation from landfill gas using traditional and innovative technologies. Energy Convers. Manag. 47, 1391–1401 (2006). https://doi.org/10.1016/j.enconman.2005.08.017

    Article  Google Scholar 

  19. Messineo, A., Panno, D.: Municipal waste management in Sicily: practices and challenges. Waste Manag. 28, 1201–1208 (2008). https://doi.org/10.1016/j.wasman.2007.05.003

    Article  Google Scholar 

  20. Calabrò, P.: Greenhouse gases emission from municipal waste management: the role of separate collection. Waste Manag. 29(7), 2178–2187 (2009)

    Article  Google Scholar 

  21. Messineo, A., Freni, G., Volpe, R.: Collection of thermal energy available from a biogas plant for leachate treatment in an urban landfill: a Sicilian case study. Energies 5(10), 3753–3767 (2012)

    Article  Google Scholar 

  22. El-Fadel, M., Findikakis, A.N., Leckie, J.O.: Gas simulation models for solid waste landfills. Crit. Rev. Environ. Sci. Technol. 27(3), 237–283 (1997)

    Article  Google Scholar 

  23. Gregory, R.G., Attenborough, G.M., Hall, D.C., Deed, C.: The validation and development of an integrated landfill gas risk assessment model GasSim. In: Proceedings Sardinia 2003, Ninth International Waste Management and Landfill Symposium Cagliari, Italy (2003)

  24. Intergovernmental Panel on Climate Change, IPCC.: Guidelines for National Greenhouse Gas Inventories. IPCC 2006 Guidelines, Geneva 2006

    Google Scholar 

  25. Morcet, M., Aran, C., Bogner, J., Chanton, J., Spokas, K., Hebe, I.: Methane mass balance: a review of field results from three french landfill case studies. Proceedings Sardinia 2003, Ninth International Waste Management and Landfill Symposium Cagliari, Italy (2003)

  26. Scharff, H., Oonk, J., Hensen, A.: Quantifying landfill gas emissions in the Netherlands—definition study. NOVEM Program Reduction of Other Greenhouse Gases (ROB), Project No. 374399/9020, Utrecht, Netherlands (2000). Available from: http://www.robklimaat.nl/docs/3730040010.pdf.

  27. Sharff, H., Jacobs, J.: Applying guidance for methane emission estimation for landfills. Waste Manag. 26, 417–429 (2006)

    Article  Google Scholar 

  28. Di Bella, G., Di Trapani, D., Viviani, G.: Evaluation of methane emissions from Palermo municipal landfill: comparison between field measurements and models. Waste Manag. 31, 1820–1826 (2011)

    Article  Google Scholar 

  29. Cossu, R., Andreottola, G., Muntoni, A.: 1996. Modelling landfill gas production. In: Christensen, T.H., Cossu, R., Stegmann, R. (eds.), Landfilling of Waste: Biogas, E & FN Spon, London, ISBN 0 419 19400 2, pp. 237–268

    Google Scholar 

  30. Bogner, J.K., Scott, P.: Landfill CH4-emissions: guidance for field measurements. Prepared for IEA Expert Group on Landfill Gas (1995)

  31. Mosher, B.W., Czepiel, P.M., Harris, R.C.: Methane emissions at nine landfill sites in the Northeastern United States. Environ. Sci. Technol. 33, 2088–2094 (1999)

    Article  Google Scholar 

  32. Perrera, M.D.N., Hettiaratchi, J.P.A., Acari, G.: A mathematical model to improve the accuracy of gas emission measurements from landfills. In: Proceedings Sardinia 1999, Seventh International Waste Management and Landfill Symposium Cagliari, Italy (1999)

  33. Maurice, C., Lagerkvist, A.: Seasonal influences of landfill gas emission. In: Proceedings Sardinia 1997, Sixth International Waste Management and Landfill Symposium Cagliari, Italy (1997)

  34. Savanne, D., Arnaud, A., Beneito, A., Berne, P., Burkhalter, R., Cellier, P., Gonze, M.A., Laville, P., Levy, F., Milward, R., Pokryszka, Z., Sabroux, J.C., Tauziede, C., Tregoures, A.: Comparison of different methods for measuring landfill methane emissions. In: Proceedings Sardinia 1997, Sixth International Waste Management and Landfill Symposium, Cagliari, Italy (1997)

  35. US Environmental Protection Agency, USEPA.: Quantifying Uncontrolled Landfill Gas Emissions from Two Florida Landfills, USA (2009). Available from: http://www.epa.gov/nrmrl/pubs/600r09046/600r09046.pdf

  36. Czepiel, P.M., Mosher, B., Harriss, R.C., Shorter, J.H., McManus, J.B., Kolb, C.E., Allwine, E., Lamb, C.E.: Landfill methane emission measured by enclouser and atmospheric tracer methods. J. Geophys. Res. 101(D11), 16711–16719 (1996)

    Article  Google Scholar 

  37. Capaccioni, B., Caramelli, C., Tatàno, F., Viscione, A.: Effects of a temporary HDPE cover on landfill gas emissions: multiyear evaluation with the static chamber approach at an Italian landfill. Waste Manag. 31, 956–965 (2011)

    Article  Google Scholar 

  38. EA (Environment Agency).: Guidance on monitoring landfill gas surface emissions—LFTGN07 v2 2010 (2010). https://www.gov.uk/government/uploads/…/LFTGN07.pdf. Accessed 16 Dec 2017

  39. US Environmental Protection Agency, USEPA.: Landfill Gas Emissions Model (LandGEM), Version 3.02, USA (2005). Available from: http://www.epa.gov/ttncatc1/ dir1/LandGEM-v302-guide.pdf.

  40. Ehrig, H.J.: Prediction of gas production from laboratory scale tests. In: Proceeding Sardinia 1991, Third International Landfill Symposium 1, Cagliari, Italy (1991), pp. 87–114

  41. Abichou, T., Chanton, J., Powelson, D., Fleiger, J., Escoriaza, S., Lei, Y., Stern, J.: Methane flux and oxidation at two types of intermediate landfill covers. Waste Manag. 26(11), 1305–1312 (2006)

    Article  Google Scholar 

  42. Penteado, R., Cavalli, M., Magnano, E., Chiampo, F.: Application of the IPCC model to a Brazilian landfill: first results. Energy Policy 42, 551–556 (2012)

    Article  Google Scholar 

  43. Scheutz, C., Kjeldsen, P., Bogner, J.E., De Visscher, A., Gebert, J., Hilger, H.A., Huber-Humer, M., Spokas, K.: Microbial methane oxidation processes andtechnologies for mitigation of landfill gas emissions. Waste Manage. Res. 27, 409–455 (2009)

    Article  Google Scholar 

  44. Gebert, J., Gröngröft, A., Pfeiffer, E.M.: Relevance of soil physical properties for the microbial oxidation of methane in landfill covers. Soil Biol. Biochem. 43, 1759–1767 (2011)

    Article  Google Scholar 

  45. Cabral, A.R., Tremblay, P., Lefebvre, G.: Determination of the diffusion coefficient of oxygen for a cover system including a pulp and paper by-product. Geotech. Test. J. 27, 1–14 (2004)

    Google Scholar 

  46. Gebert, J., Gröngröft, A.: Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Manag. 26, 399–407 (2007)

    Article  Google Scholar 

  47. Caresana, F., Comodi, G., Pelagalli, L., Pierpaoli, P., Vagni, S.: Energy production from landfill biogas: an italian case. Biomass Bioenergy 35, 4331–4339 (2011)

    Article  Google Scholar 

  48. Phung, D.L.: Cost comparison of energy projects: discounted cash flow and revenue requirement methods. Energy 5(10), 1053–1072 (1980). https://doi.org/10.1016/0360-5442(80)90029-8

    Article  Google Scholar 

  49. Prasanna, C.: Financial Management Theory and Practice. Tata McGraw Hill Education Private Limited, New Delhi (2011) ISBN 978-0-07-107848-5

  50. Raco, B., Cioni, R., Guidi, M., Scozzari, A., Lelli, M., Lippo, G.: Monitoraggio del flusso di biogas diffuso dal suolo da discariche RSU: il caso di Legoli, Peccioli (PI). RS, Rifiuti Solidi XZ (2), (2006) pp. 120–136 (in Italian)

  51. Spokas, K., Graff, C., Morcet, M., Aran, C.: Implications of the spatial variability of landfill emission rates on geospatial analyses. Waste Manag. 23(7), 599–607 (2003)

    Article  Google Scholar 

  52. Oliveri, D.: Valutazione delle emissioni diffuse da una discarica controllata. Master Degree Thesis, Palermo University (2009) (in Italian)

  53. Bernal, A.P., dos Santos, I.F.S., Moni Silva, A.P., Barros, R.M., Ribeiro, E.M.: Vinasse biogas for energy generation in Brazil: an assessment of economic feasibility, energy potential and avoided CO2 emissions. J. Clean. Prod. 151, 260–271 (2017). https://doi.org/10.1016/j.jclepro.2017.03.064

    Article  Google Scholar 

  54. Leme, M.M.V., Rocha, M.H., Lora, E.E.S., Venturini, O.J., Lopes, B.M., Ferreira, C.H.: Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil. Resour. Conserv. Recycl. 87, 8–20 (2014). https://doi.org/10.1016/j.resconrec.2014.03.003

    Article  Google Scholar 

  55. Rapporto commissionato da AEEG al Politecnico di Milano—Dipartimento di Energia.: Costi di produzione di energia elettrica da fonti rinnovabili, Dicembre (2010) (in Italian)

  56. Ismail, M.S., Moghavvemi, M., Mahlia, T.M.I.: Design of an optimized photovoltaic and microturbine hybrid power system for a remote small community: case study of Palestine. Energy Convers. Manag. 75, 271–281 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank “ATO Enna Euno S.p.A.” Company and in particular Eng. Salvatore Rindone for providing the data of waste disposal and for the collaboration during the field campaign. Authors warmly thank Eng. Maria Gabriella Giustra and Eng. Davide Bonasera for their precious help during field campaign operations and data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Di Trapani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 KB)

Supplementary material 2 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Trapani, D., Volpe, M., Di Bella, G. et al. Assessing Methane Emission and Economic Viability of Energy Exploitation in a Typical Sicilian Municipal Solid Waste Landfill. Waste Biomass Valor 10, 3173–3184 (2019). https://doi.org/10.1007/s12649-018-0321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0321-y

Keywords

Navigation