Skip to main content
Log in

Modification of Diss Fibers for Biocomposites Based on Recycled Low-Density Polyethylene and Polypropylene Blends

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The aim of this work is the valorization of diss fibers with recycled and regenerated low-density polyethylene (rLDPE) for the development of biocomposites based on blends of rLDPE polypropylene (PP) and diss fibers. The diss fibers were characterized by laser granulometer and FTIR spectroscopy. Two PP/rLDPE blends of different compositions (50/50 and 75/25) were prepared. These polymer blends were reinforced by nano-Si particles and compatibilizers which were investigated using three compatibilizers: maleic anhydride functionalized ethylene copolymer rubber (MAC), maleic anhydride functionalized ethylene copolymer rubber/SiO2 (MAC/SiO2), and maleic anhydride functionalized ethylene copolymer rubber/SiO2/ionic liquid (MAC/SiO2/IL). The thermal properties of the blends were studied using differential scanning calorimetry and thermogravimetric analysis. Their crystallinity was investigated by X-ray diffraction and their morphology by scanning electron microscopy, while mechanical properties were evaluated by tensile testing. The best tensile properties were obtained for the PP/rLDPE (75/25) blend. A significant increase of the Young’s modulus, stress at break, and elongation at break was obtained with the three compatibilizers. MAC acted as a compatibilizer of both polymers, resulting in improved interfacial adhesion which increased tensile properties. Finally, the effect of diss fiber surface modification on the properties of PP/rLDPE blends was considered. The results showed a modification of tensile properties and a satisfactory interfacial adhesion between diss fibers and polymer blends. Furthermore, thermal stability was not significantly decreased by the addition of 5 wt% diss fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3

Similar content being viewed by others

References

  1. Zhao, J., Chen, M., Wang, X., Zhao, X., Wang, Z., Dang, Z.-M., Ma, L., Hu, G.-H., Chen, F.: Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture. ACS Appl. Mater. Interfaces 5, 5550–5556 (2013)

    Article  Google Scholar 

  2. Thakur, V.K., Vennerberg, D., Kessler, M.R.: Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl. Mater. Interfaces 6, 9349–9356 (2014)

    Article  Google Scholar 

  3. Himma, N.F., Anisah, S., Prasetya, N., Wenten, I.G.: Advances in preparation, modification, and application of polypropylene membrane. J. Polym. Eng. 36, 329–362 (2015)

    Google Scholar 

  4. Pedrazzoli, D., Pegoretti, A.: Silica nanoparticles as coupling agents for polypropylene/glass composites. Compos. Sci. Technol. 76, 77–83 (2013). https://doi.org/10.1016/j.compscitech.2012.12.016

    Article  Google Scholar 

  5. Izzati Zulkifli, N., Samat, N., Anuar, H., Zainuddin, N.: Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites. Mater. Des. 69, 114–123 (2015). https://doi.org/10.1016/j.matdes.2014.12.053

    Article  Google Scholar 

  6. Maani, A., Naguib, H.E., Heuzey, M.C., Carreau, P.J.: Foaming behavior of microcellular thermoplastic olefin blends. J. Cell. Plast. 49, 223–244 (2013). https://doi.org/10.1177/0021955X13477435

    Article  Google Scholar 

  7. Blom, H.P., Teh, J.W., Rudin, A., PP/PE blends. IV. Characterization and compatibilization of blends of postconsumer resin with virgin PP and HDPE. J. Appl. Polym. Sci. 70, 2081–2095 (1998)

    Article  Google Scholar 

  8. Al-Salem, S.M., Lettieri, P., Baeyens, J.: Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag. 29, 2625–2643 (2009). https://doi.org/10.1016/j.wasman.2009.06.004

    Article  Google Scholar 

  9. Mustafa, N.: Plastic Waste Management. Canadian Plastics Institute, Toronto (1993)

    Google Scholar 

  10. John, S.: Polymer Recycling. Wiley, Chichester (1998)

    Google Scholar 

  11. Yu, M., Huang, R., He, C., Wu, Q., Zhao, X.: Hybrid composites from wheat straw, inorganic filler, and recycled polypropylene: morphology and mechanical and thermal expansion performance. Int. J. Polym. Sci. (2016). https://doi.org/10.1155/2016/2520670

    Google Scholar 

  12. Xu, B., Lin, Z., Xian, J., Huo, Z., Cao, L., Wang, Y., Gaosun, W., Mai, K., Wang, Y.: Preparation and characterization of polypropylene composites with nonmetallic materials recycled from printed circuit boards. J. Thermoplast. Compos. Mater. 29, 48–57 (2016). https://doi.org/10.1177/0892705713518788

    Article  Google Scholar 

  13. Salmah, H., Azra, B.N., Yusrina, M.D., Ismail, H.: A comparative study of polypropylene/(chloroprene rubber) and (recycled polypropylene)/(chloroprene rubber) blends. J. Vinyl Addit. Technol. 21, 122–127 (2015). https://doi.org/10.1002/vnl.21390

    Article  Google Scholar 

  14. Garlof, S., Mecklenburg, M., Smazna, D., Mishra, Y.K., Adelung, R., Schulte, K., Fiedler, B.: 3D carbon networks and their polymer composites: fabrication and electromechanical investigations of neat Aerographite and Aerographite-based PNCs under compressive load. Carbon. 111, 103–112 (2017)

    Article  Google Scholar 

  15. Thakur, V.K., Singha, A.S., Thakur, M.K.: In-air graft copolymerization of ethyl acrylate onto natural cellulosic polymers. Int. J. Polym. Anal. Charact. 17, 48–60 (2012)

    Article  Google Scholar 

  16. Parlak, O., Kumar Mishra, Y., Grigoriev, A., Mecklenburg, M., Luo, W., Keene, S., Salleo, A., Schulte, K., Ahuja, R., Adelung, R., Turner, A.P.F., Tiwari, A.: Hierarchical Aerographite nano-microtubular tetrapodal networks based electrodes as lightweight supercapacitor. Nano Energy. 34, 570–577 (2017)

    Article  Google Scholar 

  17. Thakur, V.K., Singha, A.S., Thakur, M.K.: Surface modification of natural polymers to impart low water absorbency. Int. J. Polym. Anal. Charact. 17, 133–143 (2012)

    Article  Google Scholar 

  18. Singha, A.S., Thakur, V.K.: Mechanical, thermal and morphological properties of grewia optiva fiber/polymer matrix composites. Polym. Plast. Technol. Eng. 48, 201–208 (2009). https://doi.org/10.1080/03602550802634550

    Article  Google Scholar 

  19. Sellami, A., Merzoud, M., Amziane, S.: Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Constr. Build. Mater. 47, 1117–1124 (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.073

    Article  Google Scholar 

  20. Bertin, S., Robin, J.J.: Study and characterization of virgin and recycled LDPE/PP blends. Eur. Polym. J. 38, 2255–2264 (2002)

    Article  Google Scholar 

  21. Shanks, R.A., Li, J., Chen, F., Amarasinghe, G.: Time-temperature-miscibility and morphology of polyolefin blends. Chin. J. Polym. Sci. 18, 263–270 (2000)

    Google Scholar 

  22. Guerfi, N., Belhaneche-Bensemra, N.: Preparation, characterization and valorization of regenerated low density polyethylene/polypropylene blends. Environ. Eng. Manag. J13, 2609–2613 (2014)

    Google Scholar 

  23. Radonjic, G., Gubeljak, N.: The use of ethylene/propylene copolymers as compatibilizers for recycled polyolefin blends. Macromol. Mater. Eng. 287, 1 22–132 (2002)

    Article  Google Scholar 

  24. Vaccaro, E., Dibenedetto, A.T., Huang, S.J.: Yield strength of low-density polyethylene-polypropylene blends. J. Appl. Polym. Sci. 63, 275–281 (1997)

    Article  Google Scholar 

  25. Yang, M.B., Wang, K., Ye, L., Mai, Y.W., Wu, J.S.: Low density polyethylene-polypropylene blends part 2—strengthening and toughening with copolymer. Plast. Rubber Compos. 32, 27–31 (2003)

    Article  Google Scholar 

  26. Elias, L., Fenouillot, F., Majeste, J.C., Cassagnau, P.: Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48, 6029–6040 (2007)

    Article  Google Scholar 

  27. Yang, H., Zhang, X., Qu, C., Li, B., Zhang, L., Zhang, Q.: Largely improved toughness of PP/EPDM blends by adding nano-SiO 2 particles. Polymer 48, 860–869 (2007)

    Article  Google Scholar 

  28. Jose, S., Thomas, S., Biju, P.K., Karger-Kocsis, J.: Mechanical and dynamic mechanical properties of polyolefin blends: effect of blend ratio and copolymer monomer fraction on the compatibilisation efficiency of random copolymers. J. Polym. Res. 20, 303 (2013). https://doi.org/10.1007/s10965-013-0303-5

    Article  Google Scholar 

  29. Safadi, B., Andrews, R., Grulke, E.A.: Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films J. Appl. Polym. Sci. (2002).https://doi.org/10.1002/app.10436

    Google Scholar 

  30. Thankappan Nair, S., Vijayan, P.P., Xavier, P., Bose, S., George, S.C., Thomas, S.: Selective localisation of multi walled carbon nanotubes in polypropylene/natural rubber blends to reduce the percolation threshold. Compos. Sci. Technol. 116, 9–17 (2015). https://doi.org/10.1016/j.compscitech.2015.04.021

    Article  Google Scholar 

  31. Dorigato, A., Pegoretti, A., Frache, A.: Thermal stability of high density polyethylene–fumed silica nanocomposites. J. Therm. Anal. Calorim. 109, 863–873 (2012). https://doi.org/10.1007/s10973-012-2421-4

    Article  Google Scholar 

  32. Dorigato, A., Pegporetti, A.: Reprocessing effects on propylene/silica nanocomposites. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/APP.40242

    Google Scholar 

  33. Jeziórska, R., Świerz-Motysia, B., Zielecka, M., Szadkowska, A., Studziński, M.: Structure and mechanical properties of low-density polyethylene/spherical silica nanocomposites prepared by melt mixing: the joint action of silica’s size, functionality, and compatibilizer. J. Appl. Polym. Sci. 125, 4326–4337 (2012). https://doi.org/10.1002/app.36579

    Article  Google Scholar 

  34. Daramola, O.O., Oladele, I.O., Adewuyi, B.O., Sadiku, R., Agwuncha, S.C.: Thermal, structural and morphological properties of high density polyethylene matrix composites reinforced with submicron agro silica particles and Titania particles. J. Taibah Univ. Sci. 11, 645–653 (2017). https://doi.org/10.1016/j.jtusci.2016.08.006

    Article  Google Scholar 

  35. Vladimirov, V., Betchev, C., Vassiliou, A., Papageorgiou, G., Bikiaris, D.: Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties. Compos. Sci. Technol. 66, 2935–2944 (2006). https://doi.org/10.1016/j.compscitech.2006.02.010

    Article  Google Scholar 

  36. Kurokawa, Y., Yasuda, H., Oya, A.J.: Preparation of a nanocomposite of polypropylene and smectite. J. Mater. Sci. Lett. 15, 1481–1483 (1996)

    Article  Google Scholar 

  37. Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation., Prog. Polym. Sci. (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Google Scholar 

  38. Jain, S., Goossens, H., Picchioni, F., Magusin, P., Mezari, B., Van Duin, M.: Synthetic aspects and characterization of polypropylene-silica nanocomposites prepared via solid-state modification and sol-gel reactions. Polymer 46, 6666 (2005)

    Article  Google Scholar 

  39. Jankong, S., Srikulkit, K.: Preparation of polypropylene/hydrophobic silica nanocomposites. J. Met. Mater. Miner. 18, 143–146 (2008)

    Google Scholar 

  40. Kato, M., Usuki, A., Okada, A.: Synthesis of polypropylene oligomer—clay intercalation compounds. J. Appl. Polym. Sci. 66, 1781–1785 (1997)

    Article  Google Scholar 

  41. Livi, S., Duchet-Rumeau, J., Pham, T.N., Gerard, J.F.: A comparative study on different ionic liquids used as surfactants: effect on thermal and mechanical properties of high-density polyethylene nanocomposites. J. Colloid Interface Sci. 349, 424–433 (2010)

    Article  Google Scholar 

  42. Livi, S., Gerard, J.F., Duchet-Rumeau, J.: Ionic liquids: structuration agents in a fluorinated matrix. Chem. Commun. 47, 3589–3591 (2011)

    Article  Google Scholar 

  43. Livi, S., Duchet-Rumeau, J., Pham, T.N., Gerard, J.F.: Synthesis and physical properties of new surfactants based on ionic liquids: improvement of thermal stability and mechanical behaviour of high density polyethylene nanocomposites., J. Colloid Interface Sci. (2011) https://doi.org/10.1016/j.jcis.2010.10.058

    Google Scholar 

  44. Rahman, M., Brazel, C.S.: Ionic liquids: new generation stable plasticizers for poly (vinyl chloride). Polym. Degrad. Stab. 91, 3371–3382 (2006)

    Article  Google Scholar 

  45. Yao, M., Fan, M., Liang, Y., Zhou, F., Xia, Y.: Imidazolium hexafluorophosphat ionic liquids as high temperature lubricants for steel–steel contacts. Wear 268, 67–71 (2010)

    Article  Google Scholar 

  46. Xing, C., Zhao, L., You, J., Dong, W., Cao, X., Li, Y.: Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidenefluoride). J. Phys. Chem. B 116, 8312–8320 (2012)

    Article  Google Scholar 

  47. Xing, C., Zhao, M., Zhao, L., You, J., Cao, X., Li, Y.: Ionic liquid modified poly(vinylidenefluoride): crystalline structures, miscibility, and physical properties. Polym. Chem. 4, 5726–5734 (2013)

    Article  Google Scholar 

  48. Zhao, L., Li, Y., Cao, X., You, J., Dong, W.: Multifunctional role of an ionic liquid in melt-blended poly (methyl methacrylate)/multi-walled carbon nanotube nanocomposites. Nanotechnology (2012). https://doi.org/10.1088/0957-4484/23/25/255702

    Google Scholar 

  49. Leroy, E., Jacquet, P., Coativy, G., Reguerre, A.L., Lourdin, D.: Compatibilization of starch–zein melt processed blends by an ionic liquid used as plasticizer. Carbohydr. Polym. 89, 955–963 (2012)

    Article  Google Scholar 

  50. Marinelli, A.L., Bretas, R.E.S.: Blends of polypropylene resins with a liquid crystalline polymer. I. Isothermal crystallization., J. Appl. Polym. Sci. (2003). https://doi.org/10.1002/app.11386

    Google Scholar 

  51. Hung, K.-C., Wu, T.-L., Chen, Y.-L., Wu, J.-H.: Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites. Constr. Build. Mater. 108, 139–145 (2016)

    Article  Google Scholar 

  52. Bessadok, A., Marais, S., Roudesli, S., Lixon, C., Métayer, M.: Influence of chemical modifications on water-sorption and mechanical properties of Agave fibres. Compos. A 39, 29–45 (2008)

    Article  Google Scholar 

  53. Hejun, W., Mei, L., Canhui, L.: Non-isothermal crystallization kinetics of peroxide-crosslinked polyethylene: effect of solid state mechanochemical milling. Thermochim. Acta (2012). https://doi.org/10.1016/j.tca.2012.07.008

    Google Scholar 

  54. Zhao, J., Chen, M., Wang, X., Zhao, X., Wang, Z., Dang, Z.M., Ma, L., Hu, G.H., Chen, F.: Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture. ACS Appl. Mater. Interfaces (2013). https://doi.org/10.1021/am400769j

    Google Scholar 

  55. Gui, Z., Wang, H., Gao, Y., et al.: Morphology and melt rheology of biodegradable poly(lactic acid)/poly(butylenes succinate adipate) blends: effect of blend composition. Iran. Polym. J. 21, 81–89 (2012)

    Article  Google Scholar 

  56. Olsson, A.M., Salmén, L.: The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr. Res. (2004). https://doi.org/10.1016/j.carres.2004.01.005

    Google Scholar 

  57. Garside, P., Wyeth, P.: Identification of cellulosic fibres by FTIR spectroscopy: thread and single fibre analysis by attenuated total reflectance. Stud. Conserv. 48(4), 269–275 (2003)

    Article  Google Scholar 

  58. Garside, P., Wyeth, P.: Identification of cellulosic fibres by FTIR spectroscopy: thread and single fibre analysis by attenuated total reflectance. Stud Conserv. 48, 269–275 (2006)

    Article  Google Scholar 

  59. Bessadok, A., Marais, S., Gouanve, F., Colasse, L., Zimmerlin, I., Roudesli, S., et al.: Effect of chemical treatments of Alfa (Stipa tenacissima) fibres on water-sorption properties. Compos. Sci. Technol. (2006). https://doi.org/10.1016/j.compscitech.2006.04.013

    Google Scholar 

  60. Sreekumar, P.A., Saiah, R., Saiter, J.M., Leblanc, N., Joseph, K., Unnikrishnan, G., et al.: Thermal behaviour of treated and untreated sisal fiber reinforced polyester composites fabricated by resin transfer moulding. Compos. Interfaces 15, 629–650 (2008)

    Article  Google Scholar 

  61. Shi, X., Gan, Z.: Preparation and characterization of poly (propylene carbonate)/montmorillonite nanocomposites by solution intercalation. Eur. Polym. J. 43, 4852–4858 (2007)

    Article  Google Scholar 

  62. Reza Dadfar, S.M., Ahmad Ramazani, S.A., Ali Dadfar, S.M.: Investigation of oxygen barrier properties of organoclay/HDPE/EVA nanocomposite films prepared using a two-step solution method. Polym. Compos. (2008). https://doi.org/10.1002/pc.20711

    Google Scholar 

  63. Santos, K., Bischoff, E., Liberman, S., Oviedo, M., Mauler, R.: The effects of ultrasound on organoclay dispersion in the PP matrix. Ultrason. Sonochem. 18, 997–1001 (2011)

    Article  Google Scholar 

  64. Kim, N.H., Malhotra, S.V., Xanthos, M.: Modification of cationic nanoclays with ionic liquids. Microporous Mesoporous Mater. 96, 29–35 (2006)

    Article  Google Scholar 

  65. Awad, W.H., Gilman, J.W., Nyden, M., Harris, R.H., Sutto, T.E., Callahan, J., Trulove, P.C., DeLong, H.C., Fox, D.M.: Thermal degradation studies of alkylimidazolium salts and their application in nanocomposites. Thermochim. Acta 409, 3–11 (2004)

    Article  Google Scholar 

  66. Awad, W.H., Gilman, J.W., Nyden, M., Davis, R., Harris, R.H., Sutto, T.E., Callahan, J.H., Delong, H.C., Trulove, P.C.: Thermal degradation studies of alkyl imidazolium salts and their application in nanocomposites. Molten Salts 13, 200–212 (2002)

    Google Scholar 

  67. Xie, W., Xie, R.C., Pan, W.P., Hunter, D., Koene, B., Tan, L.S., Vaia, R.: Thermal stability of quaternary phosphonium modified montmorillonites. Chem. Mater. 14, 4837–4845 (2002)

    Article  Google Scholar 

  68. Byrne, C., McNally, T.: Ionic liquid modification of layered silicates for enhanced thermal stability. Macromol. Rapid Commun. 28, 780–784 (2007)

    Article  Google Scholar 

  69. Rizzo, P., Baione, F., Guerra, G., Martinotto, L., Albizzati, E.: Polyethylene unit cell and crystallinity variations as a consequence of different cross-linking processes. Macromolecules 34, 5175–5179 (2001)

    Article  Google Scholar 

  70. Song, P., Cao, Z., Cai, Y., Zhao, L., Fang, Z., Fu, S.: Fabrication of exfoliated grapheme based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer (2011). https://doi.org/10.1016/j.polymer.2011.06.045

    Google Scholar 

Download references

Funding

The funding was provided by Direction Générale de la Recherche Scientifique et du Développement Technologique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naima Belhaneche-Bensemra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touati, Z., Boulahia, H., Belhaneche-Bensemra, N. et al. Modification of Diss Fibers for Biocomposites Based on Recycled Low-Density Polyethylene and Polypropylene Blends. Waste Biomass Valor 10, 2365–2378 (2019). https://doi.org/10.1007/s12649-018-0225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0225-x

Keywords

Navigation