Skip to main content

Advertisement

Log in

Optimization of Microwave-Assisted Oxalic Acid Pretreatment of Oil Palm Empty Fruit Bunch for Production of Fermentable Sugars

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Pretreatment is an important step in the conversion of biomass to bioethanol. In this study microwave-assisted oxalic acid (MOA) pretreatment was chosen to pretreat oil palm empty fruit bunch (OPEFB) to enhance enzymatic saccharification of the biomass. The objective of this study was to determine an optimum pretreatment condition for reducing sugar production, which could be further fermented by yeast to produce ethanol. Preliminary study was conducted to determine the range of duration of heating and temperature that will be used in the optimization by using response surface methodology (RSM). Central composite design (CCD) was used with three independent variables (duration of heating, temperature and acid concentration). Reducing sugar yield per initial biomass was used as a response variable. Preliminary study, that was conducted at 160, 170, 180, 190, and 200 °C for 5, 7.5, 10, 12.5, and 15 min, shows that pretreatment at temperature of 170–190 °C for 5–10 min produced higher reducing sugars than other conditions. Optimization using RSM shows that the optimum condition of MOA pretreatment of OPEFB was at 190 °C for 3 min with 1.1% oxalic acid, which resulted in as much as 34.60% reducing sugars after enzymatic saccharification. The pretreated OPEFB was then characterized and compared with untreated OPEFB. MOA pretreatment successfully removed 50.57% of lignin and 76.56% of hemicellulose from the OPEFB that were confirmed by a decrease or disappearance of the absorption bands of functional groups at 1339–1650 cm−1 and 1735 cm−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kementerian Sekretariat Negara Republik Indonesia.: Peraturan Presiden Republik Indonesia Nomor 5 Tahun 2006 Tentang Kebijakan Energi Nasional. http://www.setneg.go.id/cindex.php?Option=com_perundangan&id=44&task=detail&catid=6&Itemid=42&tahun=2006/ (2016). Accessed 26 Nov 2016

  2. Dewan Energi Nasional Republik Indonesia.: Outlook Energi Indonesia 2014. http://www.den.go.id/index.php/publikasi/index/EnergyOutlook/ (2016). Accessed 26 Nov 2016

  3. Banco Nacional de Desenvolvimento Econômico e Social, Centro de Gestão e Estudos Estratégicos.: Sugar-cane Based Bioethanol Energy for Sustainable Development, 1st edn. BNDES, Rio de Janeiro (2008)

    Google Scholar 

  4. Chaudhary, N., Qazi, J.I.: Lignocellulose for ethanol production: a review of issue relating to bagasse as source material. Afr. J. Biotechnol. 1(8), 1270–1274 (2011)

    Google Scholar 

  5. Mariam, I., Manzoor, K., Ali, S., Ul-haq, I.: Enhanced production of ethanol from free and immobilized Saccharomyces cerevisiae under stationary culture. Pak. J. Bot. 41(2), 821–833 (2009)

    Google Scholar 

  6. Ishola, M.M., Taherzadeh, M.J.: Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresour. Technol. 165, 9–12 (2014)

    Google Scholar 

  7. Kristiani, A., Nurdin, E., Yosi, A., Fauzan, A., Sudiyani, Y.: Effect of combining chemical and irradiation pretreatment process to characteristic of oil palm’s empty fruit bunches as raw material for second generation bioethanol. Energy Procedia 68, 195–204 (2015)

    Google Scholar 

  8. Statistics Indonesia: Indonesian Oil Palm Statistics 2016. Statistics Indonesia, Jakarta (2017)

    Google Scholar 

  9. Wong, E.D., Razali, A.K., Kawai, S.: Zero emission in palm oil industry: case study of East Oil Mill, Golden Hope Plantation Bhd., Malaysia. In: Proceedings of the Third International Wood Science Symposium, pp. 153–156 (2000)

  10. Joshi, B., Bhatt, M.R., Sharma, D., Joshi, J., Malla, R., Srerrama, L.: Review lignocellulosic ethanol production: current practise and recent developments. Biotechnol. Mol. Biol. Rev. 6(8), 172–182 (2011)

    Google Scholar 

  11. Zheng, Y., Pan, Z., Zhang, R.: Overview of biomass pretreatment for cellulosic ethanol production. Int. J. Agric. Biol. Eng. 2(3), 51–68 (2009)

    Google Scholar 

  12. Hermiati, E., Mangunwidjaja, D., Sunarti, T.C., Suparno, O., Prasetya, B.: Pemanfaatan biomassa lignoselulosa ampas tebu untuk produksi bioetanol. J. Litbang Pertan. 29(4), 121–130 (2010)

    Google Scholar 

  13. Idi, A., Mohamad, S.E.: Bioethanol from second generation feedstock (lignocellulose biomass). Interdiscip. J. Contemp. Res. Bus. 3(8), 919–935 (2011)

    Google Scholar 

  14. Dawson, L., Boopathy, R.: Cellulosic ethanol production from sugarcane bagasse without enzymatic saccharification. BioResources 3(2), 452–460 (2008)

    Google Scholar 

  15. Patel, S.J., Onkarappa, R., Sobha, K.S.: Fungal pretreatment studies on rice husk and bagasse for ethanol production. Electron. J. Environ. Agric. Food Chem. 6(4), 1921–1926 (2007)

    Google Scholar 

  16. Naik, S.N., Goud, V.V., Rout, P.K., Dalay, A.K.: Production of first and second generation biofuels: a comprehensive review. Renew. Sustain. Energy Rev. 14, 578–597 (2010)

    Google Scholar 

  17. Chandel, A.K., Kapoor, R.K., Singh, A.K., Kuhad, R.C.: Detoxification of sugarcane bagasse hydrolysate. Bioresour. Technol. 98, 1947–1950 (2007)

    Google Scholar 

  18. Mohamad, N.L., Kamal, S.M.M., Abdullah, N., Ismail, I.: Evaluation of fermentation conditions by Candida tropicalis for xylitol production from sago trunk cortex. BioResources 8(2), 2499–2509 (2013)

    Google Scholar 

  19. Li, Z., Guo, X., Feng, X., Li, C.: An environment friendly and efficient process for xylitol bioconversion from enzymatic corncob hydrolysate by adapted Candida tropicalis. Chem. Eng. J. 263, 249–256 (2015)

    Google Scholar 

  20. Saracoglu-Eken, N., Arslan, Y.: Comparison of different pretreatment in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae. Biotechnol. Lett. 22, 855–858 (2000)

    Google Scholar 

  21. Puligundla, P., Oh, S.-E., Mok, C.: Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review. Carbon Lett. 17(1), 1–10 (2016)

    Google Scholar 

  22. Aguilar-Reynosa, A., Romani, A., Rodriguez-Jasso, R.M., Aguilar, C.N., Garrote, G., Ruiz, H.A.: Microwave heating processing as alternative of pretreatment in second generation biorefinery: an overview. Energy Convers. Manag. 136, 50–65 (2017)

    Google Scholar 

  23. Fatriasari, W.: Reducing Sugar Production Through Pretreatment Process Engineering of Betung Bamboo (Dendrocalamus asper (Schult. f)). Doctoral thesis, Graduate School, Bogor Agricultural University, Bogor (2014)

  24. Fatriasari, W., Syafii, W., Wistara, N., Syamsu, K., Prasetya, B.: Lignin and cellulose changes of betung bamboo (Dendrocalamus asper) pretreated microwave heating. Int. J. Adv. Sci. Eng. Inf. Technol. 6(2), 187–196 (2016)

    Google Scholar 

  25. Tsubaki, S., Oono, K., Onda, A., Yanagisawa, K., Azuma, J.: Comparative decomposition kinetics of neutral monosaccharides by microwave and induction treatments. Carbohydr. Res. 375, 1–4 (2013)

    Google Scholar 

  26. Lanigan, B.A.: Microwave Processing of Lignocellulosic Biomass for Production of Fuels. Thesis, Department of Chemistry, University of York, York (2010)

  27. Mood, S.H., Golfeshan, A.H., Tabatabei, M., Jouzani, G.S., Najafi, G.H., Gholami, M., Ardjmand, M.: Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 27, 77–93 (2013)

    Google Scholar 

  28. Ethaib, S., Omar, R., Kamal, S.M.M., Biak, D.R.A.: Microwave-assisted pretreatment of lignocellulossic biomass: a review. J. Eng. Sci. Technol. 2:97–109 (2015)

    Google Scholar 

  29. Lee, J.-W., Rodrigues, R.C.L.B., Kim, H.J., Choi, I.G., Jeffries, T.W.: The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation. Bioresour. Technol. 101, 4379–4385 (2010)

    Google Scholar 

  30. Yan, Y., Zhang, C., Lin, Q., Wang, X., Cheng, B., Li, H., Ren, J.: Microwave-assisted oxalic acid pretreatment for the enhancing of enzyme hydrolysis in the production of xylose and arabinose from bagasse. Molecules 23, 862 (2018)

    Google Scholar 

  31. Lee, J.-W., Rodrigues, R.C.L.B., Kim, H.J., Choi, I.-G., Jeffries, T.W.: The role of xylan and lignin in oxalic acid pretreatment corncob during separate enzymatic hydrolysis and ethanol fermentation. Bioresour. Technol. 101, 4379–4385 (2010)

    Google Scholar 

  32. Nomanbhay, S.M., Hussain, R., Palanisamy, K.: Microwave-assisted alkaline pretreatment and microwave-assisted enzymatic saccharification of oil palm empty fruit bunch fiber for enhanced fermentable sugar yield. J. Sustain. Energy Syst. 3, 7–17 (2013)

    Google Scholar 

  33. Akhtar, J., Teo, C.L., Lai, L.W., Hassan, N., Idris, A., Aziz, R.A.: Factors affecting delignification of oil palm empty fruit bunch by microwave-assisted dilute acid/alkali pretreatment. BioResources 10(1), 588–596 (2015)

    Google Scholar 

  34. Laghari, S.M., Isa, M.H., Laghari, A.J.: Delignification of OPEFB by microwave-assisted chemical pretreatment. Malays. J. Sci. 35(1), 8–14 (2016)

    Google Scholar 

  35. Risanto, L., Anita, S.H., Hermiati, E., Falah, F.: Microwave irradiation and enzymatic hydrolysis of sengon (Paraserianthes falcatarina). Proc. Indones. Wood Res. Soc. 355–361 (2011)

  36. Hermiati, E.: Process Engineering of Cassava Pulp Hydrolysis Using Microwave Heating for Ethanol Production. Doctoral thesis, Graduate School, Bogor Agricultural University, Bogor (2012)

  37. Fatriasari, W., Syafii, W., Wistara, N., Syamsu, K., Prasetya, B.: Digestibility of betung bamboo fiber following fungal pretreatment. Makara J. Technol. 18(22), 51–58 (2014)

    Google Scholar 

  38. Anita, S.H., Risanto, L., Hermiati, E., Fatriasari, W.: Pretreatment of oil palm empty fruit bunch (OPEFB) using microwave irradiation. Proc. Indones. Wood Res. Soc. 348–354 (2011)

  39. Solihat, N.N., Sari, F.P., Risanto, L., Anita, S.H., Fitria, Fatriasari, W., Hermiati, E.: Disruption of oil palm empty fruit bunches by microwave assisted-oxalic acid pretreatment. J. Math. Fundam. Sci. 49(3), 244–257 (2017)

    Google Scholar 

  40. Fatriasari, W., Raniya, R., Oktaviani, M., Hermiati, E.: The improvement of sugar and bioethanol production of oil palm empty fruit bunches (Elaeis guineensis Jacq) through microwave-assisted maleic acid pretreatment. BioResources 13(2), 4378–4403 (2018)

    Google Scholar 

  41. Amenaghawon, A.N., Balogun, A.A., Agbonghac, E.E., Ogbeide, S.E., Okieimen, C.O.: Statistical optimisation of dilute acid pretreatment of corn stover using response surface methodology. J. Environ. 2(2), 34–40 (2013)

    Google Scholar 

  42. Risanto, L., Fitria, Fajriutami, T., Hermiati, E.: Enzymatic Saccharification of Liquid Hot Water and Dilute Sulfuric Acid Pretreated Oil Palm Empty Fruit Bunch and Sugarcane Bagasse. IOP, Bristol (2018)

    Google Scholar 

  43. Warrand, J., Janssen, H.-G.: Controlled production of oligosaccharides from amylose by acid-hydrolysis under microwave treatment: comparison with conventional heating. Carbohydr. Polym. 69(2), 353–362 (2007). https://doi.org/10.1016/j.carbpol.2006.10.021

    Article  Google Scholar 

  44. Whistler, R.L., Daniel, J.R.: Carbohydrates. In: Fennema, O.R. (ed.) Food Chemistry, pp. 69–137. Marcel Dekker, New York (1985)

    Google Scholar 

  45. Adney, B., Baker, J.: Measurement of Cellulase Activities: Laboratory Analytical Procedure (LAP). Issue Date: 08/12/1996. Technical Report NREL/TP-510-42628. January 2008. National Renewable Energy Laboratory, Colorado (2008)

  46. TAPPI. TAPPI T264 cm-97.: Preparation of Wood for Chemical Analysis. TAPPI Press, Atlanta (1997)

    Google Scholar 

  47. TAPPI. TAPPI Test Method T 211 om-02.: Ash in Wood, Pulp, Paper, and Paperboard: Combustion at 525 °C (2002)

  48. TAPPI. TAPPI Test Method T 204 cm-97.: Solvent Extractives of Wood and Pulp (1997)

  49. Punyamurthy, R., Sampathkumar, D., Bennehalli, B., Srinivasa, C.V.: Influence of esterification on the water absorption property of single abaca fiber. Chem. Sci. Trans. 2(2), 413–422 (2013). https://doi.org/10.7598/cst2013.371

    Article  Google Scholar 

  50. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass—Laboratory Analytical Procedure (LAP). In: National Renewable Energy Laboratory Technical Report NREL/TP-510-42618 (2012)

  51. Wise, L.E., Murphy, M., Addieco: Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap. Trade J. 122(2), 35–43 (1946)

    Google Scholar 

  52. Rowell, R.M., Pettersen, R., Han, J.S., Rowell, J.S., Tshabalala, M.A.: Cell wall chemistry. In: Rowell, R.M. (ed.) Handbook Wood Chemistry and Wood Composites, 1st edn., pp. 71–72. CRC Press, Boca Raton (2005)

    Google Scholar 

  53. Focher, B., Palma, M.T., Canetti, M., Torri, G., Cosentino, C., Gastaldi, G.: Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind. Crops Prod. 13, 193–208 (2001)

    Google Scholar 

  54. Tan, L., Yu, Y., Li, X., Zhao, J., Qu, Y., Choo, Y.M., Loh, S.K.: Pretreatment of empty fruit bunch from oil palm for fuel ethanol production and proposed biorefinery process. Bioresour. Technol. 135, 275–282 (2013)

    Google Scholar 

  55. Um, B.-H., van Walsum, G.P.: Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose. Appl. Biochem. Biotechnol. 168, 406–420 (2012)

    Google Scholar 

  56. Behera, S., Arora, R., Nandhagopai, N., Kumar, S.: Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36, 91–106 (2014)

    Google Scholar 

  57. Scordia, D., Cosentino, S.L., Jeffries, T.W.: Second generation bioethanol production from Saccharum spontaneum L. spp. aegyptiacum (Willd.) Hack. Bioresour. Technol. 101, 5358–5365 (2010)

    Google Scholar 

  58. Scordia, D., Cosentino, S.L., Lee, J.W., Jeffries, T.W.: Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donux L.). Biomass Bioenergy 35, 3018–3024 (2011)

    Google Scholar 

  59. de Carvalho, D.M., Sevastyanova, O., Penna, L.S., da Silva, B.P., Lindstrom, M.E., Colodette, J.L.: Assessment of chemical transformations in eucalyptus, sugarcane bagasse, and straw during hydrothermal, dilute acid, and alkaline pretreatments. Ind. Crops Prod. 73, 118–126 (2015)

    Google Scholar 

  60. Xu, F., Yu, J., Tesso, T., Dowell, F., Wang, D.: Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl. Energy 104, 801–809 (2013)

    Google Scholar 

  61. Lee, J.W., Kim, J.Y., Jang, H.M., Lee, M.W., Park, J.M.: Sequential dilute acid and alkali pretreatment of corn stover: sugar recovery efficiency and structural characterization. Bioresour. Technol. 182, 296–301 (2015)

    Google Scholar 

  62. Sim, S.F., Mohamed, M., Lu, N.A., Lu, M.I., Sarman, N.S.P., Samsudin, S.N.S.: Computer-assisted analysis of fourier transform infrared (FTIR) spectra for characterization of various treated and untreated agriculture biomass. BioResources 7(4), 5367–5380 (2012)

    Google Scholar 

  63. Dong, S.J., Zhang, B.X., Gao, Y.F., Hu, X.M.: An efficient process for pretreatment of lignocelluloses in functional ionic liquids. Int. J. Polym. Sci. (2015). https://doi.org/10.1155/2015/978983

    Article  Google Scholar 

  64. Ishola, M.M., Millati, R., Syamsiah, S., Cahyanto, M.N., Niklasson, C., Taherzadeh, M.J.: Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment. Molecules 17, 14995–15012 (2012)

    Google Scholar 

  65. Koutsianitis, D., Mitani, C., Giagli, K., Tsalagkas, D., Halász, K., Kolonics, O., Gallis, C., Csóka, L.: Properties of ultrasound extracted bicomponent lignocellulose thin films. Ultrason. Sonochem. 23, 148–155 (2015)

    Google Scholar 

  66. O’Dowyer, J.P., Zhu, L., Granda, C.B., Holzapple, M.T.: Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 model:inhibition pattern, degree of inhibition, validity of simplified HCH-1 model. Bioresour. Technol. 98(16), 2969–2977 (2007)

    Google Scholar 

  67. Pramasari, D.A., Haditjaroko, L., Sunarti, T.C., Hermiati, E., Syamsu, K.: The effectiveness of physical and alkali hydrothermal pretreatment in improving enzyme susceptibility of sweet sorghum bagasse. Jurnal Bahan Alam Terbarukan 6(2), 117–131 (2017)

    Google Scholar 

  68. Kim, D.S., Myint, A.A., Lee, H.W., Yoon, J., Lee, Y.W.: Evaluation of hot compressed water pretreatment and enzymatic saccharification of tulip tree sawdust using severity factors. Bioresour. Technol. 144, 460–466 (2013)

    Google Scholar 

  69. Harmsen, P.F.H., Hujigen, W.J.J., Bermudez Lopez, L.M., Bakker, R.R.C.: Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass, pp. 1–49. Food & Biobased Research, Wageningen (2010)

    Google Scholar 

Download references

Acknowledgements

This study was supported by JST (Japan Science and Technology Agency)—JICA (Japan International Collaboration Agency)—SATREPS (Science and Technology Research Partnership for Sustainable Development) Project: Innovative Bio-production in Indonesia: Integrated Bio-refinery Strategy to Promote Biomass Utilization using Super-microbes for Fuels and Chemicals Production (2013–2018) and DIPA of Research Center for Biomaterials LIPI (Indonesian Institute of Sciences) in the Fiscal Year of 2015–2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sita Heris Anita.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anita, S.H., Fitria, Solihat, N.N. et al. Optimization of Microwave-Assisted Oxalic Acid Pretreatment of Oil Palm Empty Fruit Bunch for Production of Fermentable Sugars. Waste Biomass Valor 11, 2673–2687 (2020). https://doi.org/10.1007/s12649-018-00566-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-00566-w

Keywords

Navigation