Skip to main content
Log in

Effect of Steam Explosion Pretreatment Catalysed by Organic Acid and Alkali on Chemical and Structural Properties and Enzymatic Hydrolysis of Sugarcane Bagasse

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study researched the steam explosion effect catalysed by citric acid and sodium hydroxide on the chemical and structural properties of sugarcane bagasse and on the enzymatic hydrolysis process. Chemical and structural characterisation of raw and pretreated biomass was performed by reference methodologies for lignocellulosic materials, FTIR, XRD, TGA and SEM. Enzymatic hydrolysis was performed with a final volume of 20 mL consisting 3% sugarcane bagasse (dry weight), sodium citrate buffer 50 mM (pH = 5.0) and 1 g enzyme/100 g cellulose of Cellic® Cetec 3 enzyme complex. The total reducing sugars were determined by a 3,5-dinitrosalicilic acid method. In explosion pretreatment catalysed by citric acid, a biomass was obtained with a lesser amount of hemicelluloses (16.16%), a higher initial degradation temperature and formation of cracks in fibre cell wall. Pretreated bagasse by NaOH steam explosion showed complete destructuring of fibre, lignin removal of 65% and hemicellulosic fraction preservation. Sugarcane bagasse obtained after NaOH steam explosion showed the highest production of reducing sugars (9.07 g L−1), which can be attributed to greater exposure of carbohydrate fraction promoted by lignin removal, since these parameters showed a strong negative correlation (r = −0.99, p < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. MME (Ministério de Minas e Energia): Resenha Energética Brasileira. http://www.mme.gov.br (2016). Accessed 02 Sept 2016

  2. Bhaskar, T., Bhavya, B., Singh, R., Naik, D.V., Kumar, A., Goyal, H.B.: Thermochemical conversion of biomass to biofuels. In: Pandey, A., Laroche, C., Ricke, S.C., Dussap, C.G., Gnansounou, E. (eds.) Biofuels: Alternative Feedstocks and Conversion Processes, pp. 51–77. Elsevier Inc., Burlington (2011)

    Chapter  Google Scholar 

  3. Perrone, O.M., Colombari, F.M., Rossi, J.S., Moretti, M.M.S., Bordignon, S.E., Nunes, C.D.C.C., Gomes, E., Boscolo, M., Da-Silva, R.: Ozonolysis combined with ultrasound as a pretreatment of sugarcane bagasse: Effect on the enzymatic saccharification and the physical and chemical characteristics of the substrate. Bioresour. Technol. 218, 69–76 (2016)

    Article  Google Scholar 

  4. Rocha, G.J.M., Gonçalves, A.R., Nakanishi, S.C., Nascimento, V.M., Silva, V.F.N.: Pilot scale steam explosion and diluted sulfuric acid pretreatments: comparative study aiming the sugarcane bagasse saccharification. Ind. Crops Prod. 74, 810–816 (2015)

    Article  Google Scholar 

  5. Fernandes, M.C., Ferro, M.D., Paulino, A.F.C., Mendes, J.A.S., Gravitis, J., Evtuguin, D.V., Xavier, A.M.R.B.: Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresour. Technol. 186, 309–315 (2015)

    Article  Google Scholar 

  6. Bondesson, P.-M., Dupuy, A., Glabe, M., Zacchi, G.: Optimizing ethanol and methane production from steam—pretreated, phosphoric acid-impregnated corn stover. Appl. Biochem. Biotechnol. 175, 1371–1388 (2015)

    Article  Google Scholar 

  7. Oliveira, F.M.V., Pinheiro, I.O., Souto-Maior, A.M., Martin, C., Gonçalves, A.R., Rocha, G.J.M.: Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour. Technol. 130, 168–173 (2013)

    Article  Google Scholar 

  8. Amores, I., Ballesteros, I., Manzanares, P., Sáez, F., Michelena, G., Ballesteros, M.: Ethanol production from sugarcane bagasse pretreated by steam explosion. Electron. J. Energy Environ. 1(1), 25–36 (2013)

    Article  Google Scholar 

  9. Gutiérrez-Rivera, B., Otiz-Muñiz, B., Gómez-Rodriguez, J., Cárdenas-Cágal, A., González, J.M.D., Aguilar-Uscanga, M.G.: Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture. Renew. Energy 74, 399–405 (2015)

    Article  Google Scholar 

  10. Neves, P.V., Pitarelo, A.P., Ramos, L.P.: Production of cellulosic ethanol from sugarcane bagasse by steam explosion: effect of extractives content, acid catalysis and different fermentation technologies. Bioresour. Technol. 208, 184–194 (2016)

    Article  Google Scholar 

  11. Zhu, S., Huang, W., Huang, W., Wang, K., Chen, Q., Wu. Y.: Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent. Appl. Energy 154, 190–196 (2015)

    Article  Google Scholar 

  12. Phitsuwan, P., Permsriburasuk, C., Waeonukul, R., Pason, P., Tachaapaikoon, C., Ratanakhanokchai, K.: Evaluation of fuel ethanol production from aqueous ammonia-treated rice straw via simultaneous saccharification and fermentation. Biomass Bioenergy 93, 150–157 (2016)

    Article  Google Scholar 

  13. Saha, B.C., Nichols, N.N., Queshi, N., Kennedy, G.J., Iten, L.B., Cotta, M.A.: Pilot scale conversion of wheat straw to ethanol via simultaneous saccharification and fermentation. Bioresour. Technol. 175, 17–22 (2015)

    Article  Google Scholar 

  14. Rocha, G.J.M., Gonçalves, B.R., Oliveira, E.G., Olivares, E.G., Rossel, C.E.V.: Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind. Crops Prod. 35, 274–279 (2012)

    Article  Google Scholar 

  15. Clauser, N.M., Guitiérrez, S., Area, M.C., Felissia, F.E., Vallejos, M.E.: Small-sized biorefineries as strategy to add value to sugarcane bagasse. Chem. Eng. Res. Des. 107, 137–146 (2016)

    Article  Google Scholar 

  16. Conab (Companhia Nacional de Abastecimento): Acompanhamento da safra brasileira de cana-de-açúcar, 3(2). Conab, Brasília. http://www.conab.gov.br (2016). Acessed 03 Sept 2016

  17. Bezerra, T.L., Ragauskas, A.J.: A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels Bioprod. Biorefin. 10(5), 634–647 (2016)

    Article  Google Scholar 

  18. Grimaldi, M.P., Marques, M.P., Laluce, C., Cilli, E.M., Sponchiado, S.R.P.: Evaluation of lime and hydrothermal pretreatments for efficient enzymatic hydrolysis of raw sugarcane bagasse. Biotechnol. Biofuels 8, 1–14 (2015)

    Article  Google Scholar 

  19. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83(1), 1–11 (2002)

    Article  Google Scholar 

  20. Chaturvedi, V., Verma, P.: An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech. 3(5), 415–431 (2013)

    Article  Google Scholar 

  21. Langan, P., Petridis, L., O`Neill, H.M., Pingali, S.V., Foston, M., Nishiyama, Y., Schulz, R., Lindner, B., Leif Hanson, B., Harton, S., Heller, W. T., Urban, V., Evans, B.R., Gnanakaran, S., Ragauskas, A.J., Smith, J.C., Davison, B.H.: Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem. 16(1), 63–68 (2014)

    Article  Google Scholar 

  22. Arenas-Cárdenas, P., López-López, A., Moeller-Chávez, G. E., Léon-Becerril, E.: Current pretreatments of lignocellulosic residues in the production of bioethanol. Waste Biomass Valoriz. 8(1), 161–181 (2017)

    Article  Google Scholar 

  23. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6), 673–686 (2005)

    Article  Google Scholar 

  24. Binod, P., Pandey, A.: Intoduction. In: Pandey, A., Negi, S., Binod, P., Larroche, C. (eds.) Pretreatment of Biomass: Processes and Technologies, pp. 3–6. Elsevier, Amsterdam (2015)

    Chapter  Google Scholar 

  25. Pal, S., Joy, S., Kumbhar, P., Trimukhe, K.D., Varma, A. J., Padmanabhan, S.: Effect of mixed acid catalysis on pretreatment and enzymatic digestibility of sugarcane bagasse. Energy Fuel 30(9), 7310–7318 (2016)

    Article  Google Scholar 

  26. Kumar, P., Barret, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48(8), 3713–3729 (2009)

    Article  Google Scholar 

  27. Brodeur, G., Yau, E., Badal, K., Collier, J., Ramanchandran, K.B., Ramakrishnan, S.: Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 2011, 1–17 (2011)

    Article  Google Scholar 

  28. Sarker, T.C., Azam, S., Md, G., Bonanomi, G.: Recent advances in sugarcane industry solid by-products valorization. Waste Biomass Valoriz. 8(2), 241–266 (2017)

    Article  Google Scholar 

  29. Harmsen, P., Huijgen, W., Bermudez- Lopez, L., Bakker, R.: Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass. Food & Biobased Research, Wageningen (2010)

    Google Scholar 

  30. Sindhu, R., Binod, P., Pandey, A.: Biological pretreatment of lignocellulosic biomass—an overview. Bioresour. Technol. 199, 76–82 (2016)

    Article  Google Scholar 

  31. Amarasekara, A.S.: Pretreatment of lignocellulosic biomass. In: Amarasekara, A.S. (eds.) Handbook of Cellulosic Ethanol, pp. 147–215. Jhon Wiley & Sons, Hoboken (2014)

    Google Scholar 

  32. Zheng, Y., Zhao, J., Xu, F., Li, Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. 42, 35–53 (2014)

    Article  Google Scholar 

  33. Zhao, X., Zhang, L., Liu, D.: Biomass recalcitrance. Part II: fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod. Biorefin. 6(5), 561–579 (2012)

    Article  Google Scholar 

  34. Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B.: Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29(6), 675–685 (2011)

    Article  Google Scholar 

  35. Vochozka, M., Maraousková, A., Váchal, J., Straková, J.: Economic and environmental aspects of steam-explosion pretreatment. Waste Biomass Valoriz. 7(6), 1549–1554 (2016)

    Article  Google Scholar 

  36. Wang, K., Chen, J., Sun, S.-N., Sun, R.-C.: Steam explosion. In: Pandey, A., Negi, S., Binod, P., Larroche, C.. (eds.) Pretreatment of Biomass: Processes and Technologies, pp. 75–104. Elsevier, Amsterdam (2015)

    Chapter  Google Scholar 

  37. Duque, A., Manzanares, P., Ballesteros, I., Ballesteros, M.: Steam explosion as lignocellulosic biomass pretreatment. In: Mussato, S.I.. (ed.) Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, pp. 349–368. Elsevier, Amsterdam (2016)

    Chapter  Google Scholar 

  38. Browning, B.L.: Methods of Wood Chemistry. Interscience Publishing, New York (1967)

    Google Scholar 

  39. Oliveira, F.M.V.: Avaliação de diferentes pré-tratamentos e deslignificação alcalina na sacarificação da celulose de palha de cana. M.S Dissertation, São Paulo University (2010)

  40. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29(10), 786–794 (1959)

    Article  Google Scholar 

  41. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Article  Google Scholar 

  42. Amarasekara, A.S.: Feedstocks for cellulosic ethanol. In: Amarasekara, A. S. (eds.) Handbook of Cellulosic Ethanol, pp. 44–129. Jhon Wiley & Sons, Hoboken (2014)

    Google Scholar 

  43. Shafiei, M., Kumar, R., Karimi, K.: Pretreatment of lignocellulosic biomass. In: Karimi, K.. (ed.) Lignocellulose: Based BIOPRODUCTS, pp. 85–154. Springer International Publishing, Switzerland (2015)

    Google Scholar 

  44. Tomas-Pejó, E., Alvira, P., Ballesteros, M., Negro, M. J.: Pretreatment technologies for lignocellulose to bioethanol conversion. In: Pandey, A., Larroche, C., Ricke, S.C., Dussap, C.G., Gnansounou, E. (eds.) Biofuels: Alternative Feedstocks and Conversion Processes, pp. 149–176. Elsevier Inc., Burlington (2011)

    Chapter  Google Scholar 

  45. Karp, S. G., Woiciechowski, A.L., Soccol, V.T., Soccol, C.R.: Pretreatment strategies for delignification of sugarcane bagasse: a review. Braz. Arch. Biol. Technol. 56(4), 679–689 (2013)

    Article  Google Scholar 

  46. Yang, H.Y., Wang, K., Song, X.L., Xu, F., Sun, R.C.: Enhanced enzymatic hydrolysis of triploid poplar following stepwise acidic pretreatment and alkaline fractionation. Process Biochem. 47, 619–625 (2012)

    Article  Google Scholar 

  47. Ju, Y., Huynh, L., Kasim, N. S., Guo, T., Wang, J., Fazary, Y.A.E.: Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. Carbohydr. Polym. 83, 591–599 (2011)

    Article  Google Scholar 

  48. Xiao, X., Bian, J., Li, M.-F., Xu, H., Xiao, B., Sun, R.-C.: Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresour. Technol. 159, 41–47 (2014)

    Article  Google Scholar 

  49. Chen, L., Li, J., Lu, M., Guo, X., Zhang, H., Han, L.: Integrated chemical and multi-scale structural analyses for the processes of acid pretreatment and enzymatic hydrolysis of corn stover. Carbohydr. Polym. 141(5), 1–9 (2016)

    Google Scholar 

  50. Nazir, M.S., Wahjoedi, B.A., Yussof, A.W., Abdullah, M.A.: Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. BioResources 8(2), 2161–2172 (2013)

    Article  Google Scholar 

  51. García, A., Alriols, M.G., Spigno, G., Labidi, J.: Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochem. Eng. J. 67(15), 173–185 (2012)

    Article  Google Scholar 

  52. Li, F.H., Hu, H.J., Yao, R.S., Wang, H., Li, M.M.: Structure and saccharification of rice straw pretreated with microwave-assisted dilute lye. Ind. Eng. Chem. Res. 51(17), 6270–6274 (2012)

    Article  Google Scholar 

  53. Ernesto, V.A.R.T., Ribeiro, C.A., Hojo, O., Fertonani, F.L., Crespi, M.S.: Thermal characterization of lignocellulosic residue from different sugarcanes. J. Therm. Anal. Calorim. 97(2), 653–656 (2009)

    Article  Google Scholar 

  54. Ouyang, X., Wang, W., Yuan, Q., Li, S., Zhang, Q., Zhao, P.: Improvement of lignin yield and purity from corncob in the presence of steam explosion and liquid hot pressured alcohol. RSC Adv. 76(5), 61650–61656 (2015)

    Article  Google Scholar 

  55. Nakasone, K., Ikematsu, S., Kobayashi, T.: Biocompatibility evaluation of cellulose hydrogel film regenerated from sugarcane bagasse waste and its in vivo behavior in mice. Ind. Eng. Chem. Res. 5(1), 30–37 (2016)

    Article  Google Scholar 

  56. Haripriia, R., Selvaraj, C., Naveenraj, D., Kirubakaran, S.A., Muthukumar, R.V., Thirumalaivasan, P.: Pretreatment of cellulosic waste materials. Eur. J. Biotechnol. Biosci. 2(4), 4–13 (2014)

    Google Scholar 

  57. Zhang, M., Su, R., Qi, W., He, Z.: Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl. Biochem. Biotech. 160(5), 1407–1414 (2010)

    Article  Google Scholar 

  58. Hoareau, W., Wanderson, G.T., Siegmund, B., Castellan, A., Frollini, E.: Sugarcane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polym. Degrad. Stab. 86, 567–576 (2004)

    Article  Google Scholar 

  59. Ding, D., Zhou, X., Ji, Z., You, T., Xu, F.: How does hemicelluloses removal alter plant cell wall nanoscale architecture and correlate with enzymatic digestibility? BioEnergy Res. 9(2), 601–609 (2016)

    Article  Google Scholar 

  60. Perrone, O.M.: Avaliação térmica e estrutural do bagaço de cana de açúcar pré-tratado com ozônio, ultrassom e micro-ondas para produção de etanol celulósico por hidrólise enzimática. M.S Dissertation. São Paulo State University (2015)

  61. Borysiak, S., Garbarczyk, J.: Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerisation. Fibres Text. East. Eur. 11(5), 104–106 (2003)

    Google Scholar 

  62. Corrales, R.C.N.R., Mendes, F.M.T., Perrone, C.C., Sant’anna, C., de Souza, W., Abud, Y., da Bon, E.P.S., Ferreira-Leitão, V.: Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2. Biotechnol. Biofuels 5(36), 1–8 (2012)

    Google Scholar 

  63. Guilherme, A.A., Dantas, P.V.F., Santos, E.S., Fernandes, F.A.N., Macedo, G.R.: Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Braz. J. Chem. Eng. 32(01), 23–33 (2015)

    Article  Google Scholar 

  64. Asada, C., Sasaki, C., Hirano, T., Nakamura, Y.: Chemical characteristics and enzymatic saccharification of lignocellulosic biomass treated using high-temperature saturated steam: comparison of softwood and hardwood. Bioresour. Technol. 182, 245–250 (2015)

    Article  Google Scholar 

  65. Rambo, M.K.D., Rambo, M.C.D., Almeida, K.J.C.R., Alexandre, G.P.: Estudo de análise termogravimétrica de diferentes biomassas lignocelulósicas utilizando análise de componentes principais. CeN. 37(3), 862–868 (2015)

    Article  Google Scholar 

  66. Yang, H., Yan, R., Chen, H., Lee, D. H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86(12–13), 1781–1788 (2007)

    Article  Google Scholar 

  67. Cui, L., Liu, Z., Si, C., Hui, L., Kang, N., Zhao, T.: Influence of steam explosion pretreatment on the composition and structure of wheat straw. BioResources 7(3), 4202–4213 (2012)

    Google Scholar 

  68. Chandel, A.K., Antunes, F.A.F., Silva, M.B., Silva, S.S.: Unraveling the structure of sugarcane bagasse after soaking in concentrated aqueous ammonia (SCAA) and ethanol production by Scheffersomyces (Pichia) stipites. Biotechnol. Biofuels 6, 1–11 (2016)

    Google Scholar 

  69. Huang, Q., Yan, Q., Fu, J., Xiaojing, Lv., Xiong, C., Lin, J., Liu, Z.: Comparative study of different alcoholate pretreatments for enhanced enzymatic hydrolysis of sugarcane bagasse. Bioresour. Technol. 211, 464–471 (2016)

    Article  Google Scholar 

  70. Geng, A., Xin, F., Ip, J.-Y.: Ethanol production from horticultural waste treated by a modified organosolv method. Bioresour. Technol. 104, 715–721 (2012)

    Article  Google Scholar 

  71. Remli, N.A.M., Shah, U.K.Md., Mohamad, R., Abd-Aziz, S.: Effects of chemical and thermal pretreatments on the enzymatic saccharification of rice straw for sugars productions. BioResources 9(1), 510–522 (2014)

    Google Scholar 

  72. Siqueira, G., Várnai, A., Ferraz, A., Milagres, A.M.F.: Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Appl. Energy 102, 399–402 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Council for Scientific and Technological Development (CNPq); the Foundation of Support Research of the State of Minas Gerais (FAPEMIG); the Coordination for the Improvement of Higher Education Personnel (CAPES) for financial support and the Multiuser Laboratory of Microscopy of Chemical Engineering Faculty at the Federal University of Uberlândia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pasquini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, T.A.L., Zamora, H.D.Z., Varão, L.H.R. et al. Effect of Steam Explosion Pretreatment Catalysed by Organic Acid and Alkali on Chemical and Structural Properties and Enzymatic Hydrolysis of Sugarcane Bagasse. Waste Biomass Valor 9, 2191–2201 (2018). https://doi.org/10.1007/s12649-017-9989-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9989-7

Keywords

Navigation