Skip to main content
Log in

Enzymatic Production of Xylooligosaccharides from Brown Coconut Husk Treated with Sodium Hydroxide

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present study demonstrates the application of alkali treatment coupled with steam for the extraction of xylan followed by its enzymatic hydrolysis for the production of xylooligosaccharide (XOS) from coconut husk. The chemical analysis of the husk revealed the presence of hemicelluloses, along with cellulose, lignin and ash demonstrating its suitability for XOS extraction. Application of 20% of NaOH coupled with steam treatment for 60 min enabled the fractionation of approximately 93% xylan from the husk. Response surface methodology was employed to optimize the different variables i.e. enzyme concentration, pH, temperature and time for the extraction of XOS from xylan, wherein, enzyme concentration and temperature were the influential variables affecting xylose yield and enzyme concentration, temperature, time and pH were influential variables affecting xylobiose yield significantly. FTIR analysis of the husk also confirmed the presence of hemicelluloses, whereas, the presence of xylan and XOSmix was also confirmed in the extracted mass. In nutshell, the present study was successful in establishing the suitability of coconut husk for extraction of xylan and XOS which can be further used as a prebiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Food and Agriculture Organization (FAO) Database. http://faostat3.fao.org/compare/E (2017). Accessed 24 Jan 2017

  2. Victor, E.: Hypoglycemic effects of the Cocos nucifera (coconut) husk extract on the alloxan induced female wistar rats. Cont. J. Med. Res. 6, 5–11 (2012).

    Google Scholar 

  3. Tamil Nadu University, Expert System for Coconut. http://agritech.tnau.ac.in/expert_system/coconut/coconut/coconut_processing.html (2017). Accessed 24 January 2017

  4. Victor, E.: Cocos nucifera (coconut) fruit: a review of its medical properties. Adv. Agric. Sci. Eng. Res. 3, 718–723 (2013)

    Google Scholar 

  5. Vaithanomsat, P., Apiwatanapiwat, W., Chumchuent, N., Kongtud, W., Sundhrarajun, S.: The potential of coconut husk utilization for bioethanol production. Kasetsart J. 45, 159–164 (2011)

    Google Scholar 

  6. Phillips, R.L.: The Coconut. Florida Cooperative Extension Service, pp. 1–3. University of Florida, Gainesville (1994)

    Google Scholar 

  7. Kijkar, S., Erwiyono, R.G.: Handbook Coconut Husk as a Potting Medium. ASEAN-Canada Forest Tree Seed Centre, Saraburi (1991)

    Google Scholar 

  8. Gupta, P. K., Agrawal, P., Hegde, P.: A review on xylooligosaccharides. Int. Res. J. Pharm. 3, 71–74 (2012)

    Google Scholar 

  9. Mussatto, S.I., Manchilha, I.M.: Non-digestible oligosaccharides: a review. Carbohydr. Polym. 68, 587–597 (2007)

    Article  Google Scholar 

  10. Kothari, D., Patel, S., Goyal, A.: Therapeutic spectrum of nondigestible oligosaccharides: overview of current state and prospect. J. Food Sci. 79, 1491–1498 (2014)

    Article  Google Scholar 

  11. Aachary, A. A., Prapulla, S. G.: Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr. Rev. Food Sci. Food Saf. 10, 2–16 (2011)

    Article  Google Scholar 

  12. Kolida, S., Gibson, G. R.: Prebiotic capacity of inulin-type fructans. J. Nutr. 137, 2503–2506 (2007)

    Article  Google Scholar 

  13. Cui, S. W., Wu, Y., Ding, H., Delcour, J. A., Poutanen, K.: The range of dietary fibre ingredients and a comparison of their technical functionality. In: Fibre-rich and Wholegrain Foods: Improving Quality, pp. 96–119. Elsevier, Amsterdam (2013)

  14. Aachary, A.A., Prapulla, S.G.: Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr. Rev. Food Sci. Food Saf. 10, 2–16 (2010)

  15. Okazaki, M., Koda, H., Izumi, R., Fujikawa, S., Matsumoto, N.: In vitro digestibility and in vivo utilization of xylobiose. J. Jpn. Soc. Nutr. Food Sci. 44, 41–44 (1991)

    Article  Google Scholar 

  16. Santos, A., San Mauro, M., Diaz, D.M.: Prebiotics and their long-term influence on the microbial populations of the mouse bowel. Food. Microbiol. 23, 498–503 (2006)

    Article  Google Scholar 

  17. Finegold, S.M., Li, Z., Summanen, P.H., Downes, J., Thames, G., Corbett, K., Dowd, S., Krak, M., Heber, D.: Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food. Funct. 5, 436–445 (2014)

    Article  Google Scholar 

  18. Ebringerova, A., Heinze, T.: Xylan and xylan derivatives—biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol. Rapid Commun. 21, 542–556 (2000)

    Article  Google Scholar 

  19. Chakdar, H., Kumar, M., Pandiyan, K., Singh, A., Nanjappan, K., Kashyap, P.L., Srivastava, A.K.: Bacterial xylanases: biology to biotechnology. 3 Biotech 6, 150 (2016)

    Article  Google Scholar 

  20. Nabarlatz, D., Ebringerová, A., Montané, D.: Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohydr. Polym. 69, 20–28 (2007)

    Article  Google Scholar 

  21. Kim, Y., Hendrickson, R., Mosier, N., Ladisch, M.R.: Plug flow reactor for continuous hydrolysis of glucans and xylans from pretreated corn fiber. Energy Fuel 19, 2189–21200 (2005)

    Article  Google Scholar 

  22. Jayapal, N., Samanta, A.K., Kolte, A.P., Senani, S., Sridhar, M., Suresh, K.P., Sampath, K.T.: Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylooligosaccharides production. Ind. Crop. Prod. 42, 14–24 (2013)

    Article  Google Scholar 

  23. Garrote, G., Domínguez, H., Parajó, J.C.: Production of substituted oligosaccharides by hydrolytic processing of barley husks. Ind. Eng. Chem. Res. 43, 1608–1614 (2004)

    Article  Google Scholar 

  24. Kumagai, S., Hayashi, N., Sakai, T., Nakada, M., Shibata, M.: Fractionation and saccharification of cellulose and hemicellulose in rice hull by hot-compressed-water treatment with two-step heating. J. Jpn. Inst. Energy 83, 776–781 (2004)

    Article  Google Scholar 

  25. Swennen, K., Courtin, C.M., Van der Bruggen, B., Vandecasteele, C., Delcour, J.A.: Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharide with different structures. Carbohyd. Polym. 62, 283–292 (2005)

    Article  Google Scholar 

  26. Samanta, A.K., Jayapal, N., Kolte, A.P., Senani, S., Sridhar, M., Mishra, S., Prasad, C. S., Suresh, K.P.: Application of pigeon pea (Cajanus cajan) stalks as raw material for xylooligosaccharides production. Appl. Biochem. Biotechnol. 169, 2392–2404 (2013)

    Article  Google Scholar 

  27. Akpinar, O., Erdogan, K., Bostanci, S.: Production of xylooligosaccharides by controlled acid hydrolysis of ligno cellulosic materials. Carbohyd. Res. 344, 660–666 (2009)

    Article  Google Scholar 

  28. Gullon, P., Gullon, B., Moure, A., Alonso, J.L., Domíngue, H., Parajo, J.C.: Manufacture of prebiotics from biomass sources. In: Charalampopoulos, D., Rastall, R.A. (eds.) Prebiotics and Probiotics: Science and Technology, pp. 535–589. Springer, New York (2009)

    Chapter  Google Scholar 

  29. Moure, A., Gullon, P., Domíngue, H., Parajo, J.C.: Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem. 41, 1913–1923 (2006)

    Article  Google Scholar 

  30. Carvalho, A.F.A., Neto, P.O., da Silva, D.F., Pastore, G.M.: Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res. Int. 51, 75–85 (2013)

    Article  Google Scholar 

  31. Akpinar, O., Ak, O., Kavas, A., Bakir, U., Yilmaz, L.: Enzymatic production of xylooligosaccharides from cotton stalks. J. Agr. Food. Chem. 55, 5544–5551 (2007)

    Article  Google Scholar 

  32. Samanta, A.K., Jayapal, N., Kolte, A.P., Senani, S., Sridhar, M., Dhali, A., Suresh, K.P., Jayaram, C., Prasad, C.S.: Process for enzymatic production of xylooligosaccharides from the xylan of corn cobs. J. Food. Process. Preserv. 39, 729–736 (2014)

    Article  Google Scholar 

  33. AOAC.: Official Method of Analysis of AOAC Intl. Expert System, Washinton, DC (2000)

    Google Scholar 

  34. Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991)

    Article  Google Scholar 

  35. Stuart, B.H.: Organic molecules. In: Infrared Spectroscopy: Fundamentals and Applications. Wiley, Chichester (2004)

    Chapter  Google Scholar 

  36. Coronella, C.J., Lynam, J.G., Reza M.T., Uddin, M.H.: Hydrothermal carbonization of lignocellulosic biomass. In: Jin, F. (ed.), Applications of Hydrothermal Reactions to Biomass Conversion, pp. 275–311. Springer, Berlin (2014)

    Chapter  Google Scholar 

  37. Samanta, A.K., Jayapal, N., Kolte, A.P., Senani, S., Sridhar, M., Suresh, K.P., Sampath, K.T.: Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresour. Technol. 112, 199–205 (2012)

    Article  Google Scholar 

  38. Kumar, V., Satyanarayana, T.: Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnol. Lett. 33, 2279–2285 (2011)

    Article  Google Scholar 

  39. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  40. McCleary, B.V., McGeough, P.: A comparison of polysaccharide substrates and reducing sugar methods for the measurement of endo-1,4-β-xylanase. Appl. Biochem. Biotechnol. 177, 1152–1163 (2015)

    Article  Google Scholar 

  41. Komiyama, H., Enomoto, A., Sueyoshi, Y., Nishio, T., Kato, A., Ishii, T., Shimizu, K.: Structures of aldouronic acids liberated from kenafxylan by endoxylanases from Streptomyces sp. Carbohyd. Polym. 75, 521–527 (2009)

    Article  Google Scholar 

  42. Peng, F., Bian, J., Peng, P., Guan, Y., Xu, F., Sun, R.C.: Fractional separation and structural features of hemicelluloses from sweet sorghum leaves. BioResources, 7, 4744–4759 (2012)

    Article  Google Scholar 

  43. Bergman, M.E.F., Beldman, G., Gruppen, H., Voragen, A.G.J.: Optimization of the extraction of (glucurono)-arabinoxylan from wheat bran: use of barium and calcium hydroxide solution at elevated temperature. J. Cereal. Sci. 23, 235–245 (1996)

    Article  Google Scholar 

  44. Chapla, D., Pandit, P., Shah, A.: Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour. Technol. 115, 215–221 (2012)

    Article  Google Scholar 

  45. Peng, F., Ren, J. L., Xu, F., Bian, J., Peng, P., Sun, R.C.: Fractional studies of alkali-soluble hemicelluloses obtained by graded ethanol precipitation from sugar cane bagasse. J. Agric. Food. Chem. 58, 1768–1776 (2010)

    Article  Google Scholar 

  46. Kačuráková, M., Wellner, N., Ebringerova, A., Hromádková, Z., Wilson, R.H., Belton, P.S.: Characterisation of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocoll. 13, 35–41 (1991)

    Article  Google Scholar 

  47. Gowdhaman, D., Ponnusami, V.: Production and optimization of xylooligosaccharides from corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential. Int. J. Biol. Macromol. 79, 595–600 (2015)

    Article  Google Scholar 

  48. Liang, W.S., Liu, T.C., Chang, C.J., Pan, C.L.: Bioactivity of β-1,3-xylan extracted from Caulerpalentillifera by using Escherichia coli ClearColi BL21 (DE3)-β-1, 3-xylanase XYLII. J. Food Nutr. Res. 3, 437–444 (2015)

    Google Scholar 

  49. Bian, J., Peng, F., Peng, X.P., Peng, P., Xu, F., Sun, R.C.: Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresour. Technol. 127, 236–241 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Food Technology and Nutrition (School of Agriculture) and School of Basic Sciences, Lovely Professional University, Phagwara (Punjab) for providing infrastructural facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jnawali, P., Kumar, V., Tanwar, B. et al. Enzymatic Production of Xylooligosaccharides from Brown Coconut Husk Treated with Sodium Hydroxide. Waste Biomass Valor 9, 1757–1766 (2018). https://doi.org/10.1007/s12649-017-9963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9963-4

Keywords

Navigation