Skip to main content

Advertisement

Log in

A New Plasma Electro-Burner Concept for Biomass and Waste Combustion

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Raw biomass resources and many wastes are composed of poor-LHV organic matter (LHV <20 MJ/kg). Their use as renewable fuels for heat or power generation is challenging, particularly when they are in solid form. Indeed, their combustion in air is critical and it is not possible to build autonomous burners independently of external conditions without assistance. Three main options are currently studied: (i) the co-combustion, in which the poor-LHV fuel flame is supported thanks to an additional rich fuel, (ii) the oxy-combustion (iii) the electro-combustion, consisting in the generation of thermal plasma for activating and assisting the combustion. This last option is highly interesting because it only requires electricity (having low carbon content if renewable electricity). Depending on the nature of the feedstock, the electric power of the plasma does not exceed 1–5% of the flame power. Most plasma electro-burners technologies today on the market use DC plasma torches. These technologies suffer from many drawbacks among which: limited electrodes lifetime, poor reliability, important water cooling needs, need of AC/DC transformers, etc. leading to high CAPEX and OPEX. With the objective to go over these limits and reduce OPEX and CAPEX while increasing reliability, the Center PERSEE MINES-ParisTech has been working in the development of an original three-phase AC plasma technology to be integrated in a plasma electro-burner. This paper presents the main achievements on the plasma technology with a special focus on the limitation of electrodes erosion thanks to an active thermochemical gas sheathing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, et S.: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of Intergovernmental Panel on Climate Change. Cambridge University Press, (2014)

  2. Ministère de l’écologie, du développement durable et de l’énergie, « Rapport sur les progrès réalisés dans la promotion et l’utilisation des énergies renouvelables », Report (2013)

  3. Haider Markus et Seguin Philippe, Chaudières de puissance, à déchets, à biomasse et de récupération, Techniques de l’Ingénieur, Techniques de l’Ingenieur, (2012)

  4. Xingang, Z., Zhongfu, T., Pingkuo, L.: Development goal of 30 GW for China’s biomass power generation: Will it be achieved? Renew. Sustain. Energy Rev. 25, 310–317 (2013)

    Article  Google Scholar 

  5. Jenkins, B.M., Baxter, L.L., Miles, T.R. Jr, Miles, T.R.: Combustion properties of biomass, Fuel Process. Technol. 54(1–3), 17–46 (1998)

    Article  Google Scholar 

  6. Nussbaumer, T.: Combustion and Co-combustion of biomass: Fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 17, 1510–1521 (2003)

    Article  Google Scholar 

  7. Zheng, L.: Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture. Canmet ENERGY Ottawa Research Centre, Canada (2011)

    Book  Google Scholar 

  8. Skorek-Osikowska, A., Bartela, L., Kotowicz, J., Job, et M.: Thermodynamic and economic analysis of the different variants of a coal-fired, 460 MW power plant using oxy-combustion technology. Energy Convers. Manag. 76, 109–120 (2013)

    Article  Google Scholar 

  9. Ju et, Y., Sun, W.: Plasma assisted combustion: Dynamics and chemistry. Prog. Energy Combust. Sci. 48, 21–83 (2015)

    Article  Google Scholar 

  10. Ju, Y., Sun, W.: Plasma assisted combustion: Progress, challenges, and opportunities. Combust. Flame 162(3), 529–532 (2015)

    Article  Google Scholar 

  11. Bergthorson, J.M., Thomson, M.J.: A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renew. Sustain. Energy Rev. 42, 1393–1417 (2015)

    Article  Google Scholar 

  12. Merola, S.S., Marchitto, L., Tornatore, C., Valentino, G., Irimescu, et A.: Optical characterization of combustion processes in a DISI engine equipped with plasma-assisted ignition system, Appl. Therm. Eng. 69(1–2), 177–187 (2014)

    Article  Google Scholar 

  13. Starikovskiy, A., Aleksandrov, N. Plasma-assisted ignition and combustion, Prog. Energy Combust. Sci. 39(1), 61–110 (2013)

    Article  Google Scholar 

  14. Warris, A.-M., Weinberg, F.: Ignition and flame stabilization by plasma jets in fast gas streams, Symp. Int. Combust. 20(1), 1825–1831 (1985)

    Article  Google Scholar 

  15. Askarova, A., Karpenko, E., Lavrishcheva, Y., Messerle, V.E., Ustimenko, et A.: Plasma-supported coal combustion in boiler furnace, IEEE Trans. Plasma Sci. 35(6), 1607–1616 (2007)

    Article  Google Scholar 

  16. Bromberg, L., Cohn, D.R., Rabinovich, A., Heywood, J.: Emissions reductions using hydrogen from plasmatron fuels converter. Int. J. Hydrog. Energy. 26, 1115–1121 (2001)

    Article  Google Scholar 

  17. Lee, D.H., Kim, K.T., Kang, H.S., Song, Y.H., Park, J.E.: Plasma-assisted combustion technology for NOx reduction in industrial burners. Environ. Sci. Technol. 47, 10964–10970 (2013)

    Article  Google Scholar 

  18. NFPA 85: Boiler and Combustion Systems Hazards Code. Avalaible on-line on: http://catalog.nfpa.org/2015-NFPA-85-Boiler-and-Combustion-Systems-Hazards-Code-P1208.aspx.

  19. Wang, A., Tang, H., Ji, S., Wang, Y., Tian, D., Wang, G., Ren, W., Chen, X., Shao, R., Zhang, X., Ma, et S.: Plasma igniter with assembled cathode, EP1371905 B1, 01-dec-2010

  20. Messerle, V.E., Karpenko, E.I., Utsimenko, A.B.: Plasma amplifier of coal combustion in the boiler furnace utility: Numerical simulation and field tests. Fuel 126, 294–300 (2014)

    Article  Google Scholar 

  21. Messerle, V.E., Ustimenko, A.B., Karpenko, E.I.: Plasma Technology for Enhancement of Pulverized Coal Ignition and Combustion, Proceedings of ISPC20, Philadelphia, July (2011)

  22. Kanilo, P.M., Kazantsev, V.I., Rasyuk, N.I., Schünemann, K., Vavriv, et D.M.: Microwave plasma combustion of coal. Fuel 82(2), 187–193 (2003)

    Article  Google Scholar 

  23. Bukowski, P., Kobel, P., Kordylewski, W., Mączka, et T.: Use of cavity plasmatron in pulverized coal muffle burner for start-up of a boiler. Rynek Energii 1, 132–136 (2010)

    Google Scholar 

  24. Galant, S., Rebuffat, D., Reybillet, M., Martin, N.: Réacteur haute température associé à une zone de plasmagenèse, en particulier brûleur mixte électricité-combustible, EP0130913 B1, 07-oct-1987

  25. Leleu, S., Aschard, J., Bouvier, et A.: «Electrobrûleur à gaz à apport d’énergie électrique et amorçage assisté», EP0457994 B1, 12-oct-1994

  26. Messerle, V.E., Karpenko, E.I., Ustimenko, A.B.: Plasma assisted power coal combustion in the furnace of utility boiler: Numerical modelling and full-scale test. Fuel. 126, 294300 (2014)

    Article  Google Scholar 

  27. Boulos M.I., Fauchais P., Pfender E.: Thermal plasmas: fundamentals and applications, vol. 1. Plenum Press, New York, (1994)

    Book  Google Scholar 

  28. Solonenko, O.P.: Thermal plasma torches and technologies, vol. 15. Cambridge International Science Publishing, Cambridge (2006)

    Google Scholar 

  29. Fulcheri, L., Fabry, F., Takali, S., Rohani, V., Three phase AC arc plasma systems: A review, Plasma Chem. Plasma Process. 35(4), 565–585 (2015)

    Article  Google Scholar 

  30. Bonet, C., Contribution to the theoretical study of a refractory spheroidal particle evaporation in ac thermal plasma (in French), State Doctorate es Sciences Physiques defended on 28 April, 1973, CNRS, France (199 pages), CNRS registration no. A.O. 8262. Because this reference is not available in the Internet, the author (Fulcheri L.) is willing to send it to interested reader upon request

  31. Anonymous, The graphite electrodes electro-burner (in French), Journée d’étude du 30 Octobre 1986 Thermal engineering society (Société Française des Thermiciens), pp 1–13. Because this reference is not available in the Internet, the author (Fulcheri L.) is willing to send it to interested reader upon request.

  32. Reybillet, M., Bertin electro-burner: description and mockup tests (in French), Journée d’étude du 30 Octobre 1986 Thermal engineering society (Société Française des Thermiciens), 5 pages. Because this reference is not available in the Internet, the author (Fulcheri L.) is willing to send it to interested reader upon request

  33. Fulcheri, L., Schwob, Y.: From methane to hydrogen, carbon black and water. Int. J. Hydrog. Energy. 20(3), 197–202 (1995)

    Article  Google Scholar 

  34. Fulcheri, L., Probst, N., Flamant, G., Fabry, F., Grivei, E., Bourrat, X.: Plasma processing: a step towards, the production of new grades of carbon black. Carbon. 40, 169–176 (2002)

    Article  Google Scholar 

  35. Fulcheri, L., Schwob, Y., Flamant, G.: Comparison between new carbon nanostructures produced by plasma with industrial carbon black grades. J. Phys. III 7, 491–503 (1997)

    Google Scholar 

  36. Fulcheri, L., Schwob, Y.: Comparison between two carbon nanostructures furnace and acetylene blacks. High Temp Chem. Process. 3, 575–583 (1994)

    Google Scholar 

  37. Gruenberger, T., Gonzalez-Aguilar, J., Fabry, F., Fulcheri, L., Grivei, E., Probst, N., Flamant, G., Okuno, H., Charlier, J.C.: Production of carbon nanotubes and other nanostructures via continuous 3-phase AC plasma processing. Fuller Nanotub. Carbon Nanostruct. 12(3), 571–581 (2004)

    Article  Google Scholar 

  38. Okuno, H., Grivei, E., Fabry, F., Gruenberger, T., Gonzalez-Aguilar, J., Palchinenko, A., Fulcheri, L., Probst, N., Charlier, J.C.: Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process. Carbon. 42, 2543–2549 (2004)

    Article  Google Scholar 

  39. Fabry, F., Study of a plasma process for the synthesis of carbon black by high temperature hydrocarbons pyrolysis and product characterization (in French), PhD thesis defended on 6 July, 1999, University of Perpignan 251 pp

  40. Ravary, B., Thermal and Hydrodynamic modelling of a 3-phase plasma reactor, contribution to the development of an industrial process for the production of carbon black (in French), PhD thesis dissertation, defended on December 17, 1998, Ecole des Mines de Paris 156 pp

  41. Ravary, B., Fulcheri, L., Bakken, J.A., Flamant, G., Fabry, F.: Influence of the Electromagnetic forces on momentum and heat transfer in a 3-Phase AC plasma reactor. Plasma Chem. Plasma Process 19(1), 69–89 Plenum Press, 1999

    Article  Google Scholar 

  42. Ravary, B., Fulcheri, L., Fabry, F., Flamant, G.: Analysis of the behavior of the arcs in a three phase AC plasma reactor. In: Proceedings ISPC-13 (13th International Symposium on Plasma Chemistry), 18–22 August, 1997, Beijing, China, vol. 1, edited by Wu, C.K., Peking University Press, pp 219–225

  43. Fulcheri L., Carbon Nanostructures by plasma (in French), Habilitation degree dissertation (HDR) defended on March 21, 2003. University of Perpignan, http://tel.archives-ouvertes.fr/tel-00550503

  44. Rehmet C., Theoretical and experimental study of a 3-phase AC plasma torch associated to a gasification process (in French), PhD thesis dissertation defended on 23 September, 2013, MINES-ParisTech (196 pages)

  45. Rehmet, C., Rohani, V., Cauneau, F., Fulcheri, L.: 3D unsteady state MHD modeling of a 3-phase AC hot graphite electrodes plasma torch. Plasma Chem. Plasma Process. 33, 491–515 (2013)

    Article  Google Scholar 

  46. Rehmet, C., Fabry, F., Rohani, V., Cauneau, F., Fulcheri L.: A comparison between MHD modeling and experimental results in a 3-Phase AC: arc plasma torch. Influ electrode tip geom. Plasma Chem. Plasma Process. 34(4), 975–996 (2014)

    Article  Google Scholar 

  47. Rehmet, C., Fabry, F., Rohani, V., Cauneau, F., Fulcheri, L.: High speed video camera and electrical signal analyses of arcs behavior in a 3-Phase AC arc plasma torch. Plasma Chem. Plasma Process. 33, 779–796 (2013)

    Article  Google Scholar 

  48. Rehmet, C., Fabry, F., Rohani, V., Cauneau, F., Fulcheri, L.: Unsteady state analysis of free-burning arcs in a 3-phase AC plasma torch. Comparison between parallel and coplanar configurations. Plasma Sour. Sci. Technol. 23, 065011 (2014)

    Article  Google Scholar 

  49. Takali, S.: Etude théorique d’un électrobruleur industriel dote d’une torche à arc triphasée pour la valorization énergétique de combustibles à faible pouvoir calorifique (in French), PhD thesis dissertation defended on 02 December, 2015, MINES-ParisTech (227 pages)

  50. Jones, W.P., Lindstedt, R.P.: Global reaction schemes for hydrocarbon combustion. Combust. Flame. 73(3), 233–249 (1998)

    Article  Google Scholar 

  51. Takali, S., Rohani, V., Cressault, Y., Fabry, F., Cauneau, F., Fulcheri, L.: 3-D Flow Modeling of a Three-Phase AC Plasma Torch Working With Air Using a Stationary Source Domain With Gas Radiation. IEEE Trans. Plasma Sci. 44(6) 996–1008 (2016)

    Article  Google Scholar 

  52. Cuoci, A., Frassoldati, A., Faravelli, T., Ranzi, E.: Accuracy and Flexibility of Simplified Kinetic Models for CFD applications, 32nd meeting on combustion, Italian section of the Combustion Institute, (2009)

  53. Wang, H., Frenklach, M.: Detailed reduction of reaction mechanisms for flame modeling. Combust. Flame. 87(3–4), 365–370 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandad Rohani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohani, V., Takali, S., Gérard, G. et al. A New Plasma Electro-Burner Concept for Biomass and Waste Combustion. Waste Biomass Valor 8, 2791–2805 (2017). https://doi.org/10.1007/s12649-017-9829-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9829-9

Keywords

Navigation