Skip to main content
Log in

Hydrothermal Treatments of Cistus ladanifer Industrial Residues Obtained from Essential Oil Distilleries

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to optimize hydrothermal treatments (autohydrolysis) for selective hydrolysis of hemicelluloses in the residues obtained from the industrial steam distillation of Cistus ladanifer (rock-rose) for essential oil extraction (CLR). The effect of the autohydrolysis in the removal of extractives of these residues was also evaluated.

Methods

The raw material was treated with water in a 6:1 liquid-to-solid ratio (w/w) and the effect of temperature (130–230 °C) on the composition of liquid and solid phases were evaluated and interpreted using the severity factor (log R0).

Results

The highest recovery of oligosaccharides (24.7 g/L), corresponding to a yield of 28.4 g/100 g of CLR was obtained at moderate conditions, log R0 of 3.12. Together with hemicelluloses, polar extracts were also largely solubilized during the hydrothermal process yielding hydrolysates with a relevant concentration of phenolics. The highest glucan content (35.6 g/100 g of CLR) of the solid residue was obtained at more severe conditions, log R0 of 4.0 (220 °C). There was no apparent lignin solubilisation in any of the conditions, which is an advantage of this hydrolytic pretreatment.

Conclusions

Cistus ladanifer residues demonstrated to have potential to be used in the biorefinery framework with a full upgrade of all biomass fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Morales-Soto, A., Oruna-Concha, M.J., Elmore, J.S., Barrajón-Catalán, E., Micol, V., Roldán, C., Segura-Carretero, A.: Volatile profile of Spanish Cistus plants as sources of antimicrobials for industrial applications. Ind. Crops. Prod. 74, 425–433 (2015)

    Article  Google Scholar 

  2. Rincón, J., De Lucas, A., Gracia, I.: Isolation of rock rose essential oil using supercritical CO2 extraction. Sep. Sci. Technol. 35, 2745–2763 (2000)

    Article  Google Scholar 

  3. Clamote, F., Porto, A.C.M., Araújo, P.V., Holyoak, D.T., Pereira, A.J., Aguiar, C., Lourenço, J.: Cistus ladanifer L. subsp. ladanifer—Mapa de distribuição. Flora-On: Flora de Portugal Interactiva, Sociedade Portuguesa de Botânica (2016). http://www.flora-on.pt. Accessed 12 Oct 2016

  4. Mariotti, J.P., Tomi, F., Casanova, J., Costa, J., Bernardini, A.F.: Composition of the essential oil of C. ladaniferus L. Cultivated in Corsica (France). Flavour Frag. J. 12, 147 (1997)

    Article  Google Scholar 

  5. Gomes, P.B., Mata, V.G., Rodrigues, A.E.: Characterization of the Portuguese-grown Cistus ladanifer essential oil. J. Essent. Oil Res. 17, 160–165 (2005)

    Article  Google Scholar 

  6. Andrade, D., Gil, C., Breitenfeld, L., Domingues, F., Duarte, A. P.: Bioactive extracts from Cistus ladanifer and Arbutus unedo L. Ind. Crops Prod. 30, 165–167 (2009)

    Article  Google Scholar 

  7. Nuñez-Olivera, E., Martinez-Abaigar, J., Escudero, J.C., García-Novo, F.: A comparative study of Cistus ladanifer shrub lands in Extremadura (CW Spain) on the basis of woody species composition and cover. Vegetatio. 117, 123–132 (1995)

    Article  Google Scholar 

  8. Greche, H., Mrabet, N., Zrira, S., Ismaili-Alaoui, M., Benjilali, B., Boukir, A.: The volatiles of the leaf oil of C. ladanifer L. var. albiflorus and Labdanum extracts of Moroccan origin and their antimicrobial activities. J. Essent. Oil Res. 21, 166–173 (2009)

    Article  Google Scholar 

  9. Zidane, H., Elmiz, M., Aouinti, F., Tahani, A., Wathelet, J., Sindic, M., Elbachiri, A.: Chemical composition and antioxidant activity of essential oil, various organic extracts of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco. Afr. J. Biotechnol. 12, 5314–5320 (2013)

    Article  Google Scholar 

  10. Ferreira, S., Duarte, A.P., Ribeiro, M.H.L., Queiroz, J.A., Domingues, F.C.: Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochem. Eng. J. 45, 192–200 (2009)

    Article  Google Scholar 

  11. Gil, N., Domingues, F.C., Amaral, M.E., Duarte, A.P.: Optimization of diluted acid pretreatment of Cytisus striatus and Cistus ladanifer for bioethanol production. J. Biobased Mater. Bio. 6, 1–7 (2012)

    Article  Google Scholar 

  12. Ferro, D., Fernandes, M.C., Paulino, A.F.C., Prozil, S.O., Gravitis, J., Evtuguin, D.V., Xavier, A.M.R.B.: Bioethanol production from Cistus ladanifer after steam explosion pretreatment. Biochem. Eng. J. 104, 98–105 (2015)

    Article  Google Scholar 

  13. Carvalheiro, F., Moniz, P., Duarte, L.C., Esteves, M.P., Girio, F.M.: Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J. Ind. Microbiol. Biotechnol. 38, 221–227 (2011)

    Article  Google Scholar 

  14. Garrote, G., Domínguez, H., Parajó, J.C.: Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. J Food Eng. 52, 211–218 (2002)

    Article  Google Scholar 

  15. Rivas, B., Domínguez, J.M., Domínguez, H., Parajó, J.C.: Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzyme Microb. Technol. 31, 431–438 (2002)

    Article  Google Scholar 

  16. Carvalheiro, F., Esteves, M.P., Parajó, J.C., Pereira, H., Gírio, F.M.: Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour. Technol. 91, 93–100 (2004)

    Article  Google Scholar 

  17. Branco, P.C., Dionísio, A.M., Torrado, I., Carvalheiro, F., Castilho, P.C., Duarte, L.C.: Autohydrolysis of Anonna cherimola Mill. seeds: optimization, modelling and products characterization. Biochem. Eng. J. 104, 2–9 (2015)

    Article  Google Scholar 

  18. Overend, R.P., e Chornet, E.: Heavy-oil cracking: the case for nonhomogenous kinetics. Can. J. Phys. 68, 1105–1111 (1990)

    Article  Google Scholar 

  19. Overend, R.P., Chornet, E.: Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil. Trans. R. Soc. Lond. A321, 523–536 (1987)

    Article  Google Scholar 

  20. Moniz, P., Pereira, H., Quilhó, T., Carvalheiro, F.: Characterisation and hydrothermal processing of corn straw towards the selective fractionation of hemicelluloses. Ind. Crops Prod. 50, 145–153 (2013)

    Article  Google Scholar 

  21. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass. NREL/TP-510-42618. National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  22. AOAC: Official Methods of Analysis, 11th edn. AOAC, Washington, DC (1975)

    Google Scholar 

  23. Roseiro, L.B., Tavares, C.S., Roseiro, J.C., Rauter, A.P.: Antioxidants from aqueous decoction of carob pods biomass (Ceretonia siliqua L.): optimisation using response surface methodology and phenolic profile by capillary electrophoresis. Ind. Crops Prod. 44, 119–126 (2013)

    Article  Google Scholar 

  24. Paulino, A.F.C.: Valorização da biomassa lenhocelulósica: estudo de sacarificação enzimática do cardo e da esteva. Master Thesis, IPBEJA (ESA), Beja, (2013)

  25. Vázquez, M.J., Alonso, J.L., Domínguez, H., Parajó, J.C.: Enhancing the potential of oligosaccharides from corncob autohydrolysis as prebiotic food ingredients. Ind. Crops Prod. 24, 152–159 (2006)

    Article  Google Scholar 

  26. Garrote, G., Parajó, J.C.: Non-isothermal autohydrolysis of Eucalyptus wood. Wood Sci. Technol. 36, 111–123 (2002)

    Article  Google Scholar 

  27. Feria, M.J., López, F., García, J.C., Pérez, A., Zamudio, M.A.M., Alfaro, A.: Valorization of Leucaena leucocephala for energy and chemicals from autohydrolysis. Biomass Bioenergy. 35, 2224–2233 (2011)

    Article  Google Scholar 

  28. Silva-Fernandes, T., Duarte, L. C., Carvalheiro, F., Loureiro-Dias, M. C., Fonseca, C., Gírio, C.: Hydrothermal pretreatment of several lignocellulosic mixtures containing wheat straw and two hardwood residues available in Southern Europe. Bioresour. Technol. 183, 213–220 (2015)

    Article  Google Scholar 

  29. Garrote, G., Cruz, J.M., Domínguez, H., Parajó, J.C.: Valorisation of waste fractions from autohydrolysis of selected lignocellulosic materials. J. Chem. Technol. Biotechnol. 78, 392–398 (2003)

    Article  Google Scholar 

  30. Rostro, M., Sánchez-González, M., Rivas, S., Moure, A., Domínguez, H., Parajó, J.C.: Non-isothermal autohydrolysis of nixtamalized maize pericarp: production of nutraceutical extracts. LWT-Food Sci. Technol. 58, 550–556 (2014)

    Article  Google Scholar 

  31. Conde, E., Moure, A., Dominguez, H., Parajo, J.C.: Fractionation of antioxidants from autohydrolysis of barley husks. J. Agric. Food Chem. 56, 10651–10659 (2008)

    Article  Google Scholar 

  32. Akpinar, O., Gunay, K., Yilmaz, Y., Levent, O., Bostanci, S.: Enzymatic processing and antioxidant activity of agricultural waste autohydrolysis liquors. Bioresources. 5, 699–711 (2010)

    Google Scholar 

  33. Ballesteros, L.F., Teixeira, J.A., Mussatto, S.I.: Extraction of polysaccharides by autohydrolysis of spent coffee grounds and evaluation of their antioxidant activity. Carbohydr. Polym. 157, 258–266 (2017)

    Article  Google Scholar 

  34. Buruiana, C.-T., Vizireanu, C., Garrote, G., Parajó, J.C.: Optimization of corn stover biorefinery for coproduction of oligomers and second generation bioethanol using non-isothermal autohydrolysis. Ind. Crops Prod. 54, 32–39 (2014)

    Article  Google Scholar 

  35. Gullón, B., Yañez, R., Alonso, J.L., Parajó, J.C.: Production of oligosaccharides and sugars from rye straw: a kinetic approach. Bioresour. Technol. 101, 6676–6684 (2010)

    Article  Google Scholar 

  36. Martin, J.F.G., Cuevas, M., Bravo, V., Sanchez, S.: Ethanol production from olive prunings by autohydrolysis and fermentation with Candida tropicalis. Renew. Energy. 35, 1602–1608 (2010)

    Article  Google Scholar 

  37. Romaní, A., Garrote, G., José, Luis, Alonso, J.L., Parajó, J.C.: Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour. Technol. 101, 8706–8712 (2010)

    Article  Google Scholar 

  38. Holladay, J.E., Bozell, J.J., White, J.F., Johnson, D.: Top value-added chemicals from biomass. Volume II—results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Laboratory, Richland (2007)

    Book  Google Scholar 

  39. Morais, A.P. S., Sansigolo, C.A., Neto, M.O.: Effects of autohydrolysis of Eucalyptus urograndis and Eucalyptus grandis on influence of chemical components and crystallinity index. Bioresour. Technol. 214, 623–628 (2016)

    Article  Google Scholar 

  40. Martin-Sampedro, R., Eugenio, M.E., Moreno, J.A., Revilla, E., Villar, J.C.: Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment. Bioresour. Technol. 153, 236–244 (2014)

    Article  Google Scholar 

  41. Fernandez-Arroyo, S., Barrajon-Catalan, E., Micol, V., Segura-Carretero, A., Fernandez-Gutierrez, A.: High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a Cistus ladanifer aqueous extract. Phytochem. Anal. 21, 307–313 (2010)

    Article  Google Scholar 

  42. Barrajón-Catalán, E., Fernández-Arroyo, S., Saura, D., Guillén, E., Fernández-Gutiérrez, A., Segura-Carreter, A., Micol, V.: Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food Chem Toxicol. 48, 2273–2282 (2010)

    Article  Google Scholar 

  43. Barros, L., Dueñas, M., Alves, C.T., Silva, S., Henriques, M., Santos-Buelga, C., Ferreira, I.C.F.R.: Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Ind. Crops Prod. 41, 41–45 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Junia Alves-Ferreira is grateful to CAPES Foundation, Ministry of Education of Brazil, Brasília – DF 700 40−020, Brazil (doctoral scholarship – Process 9109/13−7). This work was supported by QREN Project “Biomassa Endógena”. Centro de Estudos Florestais is a research unit funded by FCT - Fundação para a Ciência e Tecnologia (UID/AGR/00239/2013). Instituto de Ciências Agrárias e Ambientais Mediterrânicas is a research unit funded by FCT (UID/AGR/00115/2013). The authors thank Joaquina Silva, Lídia Silva and Céu Penedo for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florbela Carvalheiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves-Ferreira, J., Duarte, L.C., Fernandes, M.C. et al. Hydrothermal Treatments of Cistus ladanifer Industrial Residues Obtained from Essential Oil Distilleries. Waste Biomass Valor 10, 1303–1310 (2019). https://doi.org/10.1007/s12649-017-0127-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0127-3

Keywords

Navigation