Skip to main content
Log in

Landfill Leachate Effects on Germination and Seedling Growth of Hemp Cultivars (Cannabis Sativa L.)

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Landfill leachate is one of the major sources of pollutions discharged into the environment. It is composed from a complex mixture of chemicals and handling typically involves treatment either on-site or at a wastewater treatment plants but phytoremediation is a promising method. The aim of this work was to evaluate the potential of agronomic plant species with high annual biomass yield (Cannabis sativa L.) for toxicity removal from landfill leachate. Raw leachate collected from the pond of untreated leachate at sanitary landfill in Czech Republic was used in the study. The hemp cultivation experiments were performed in the beginning of 2017 under laboratory conditions using three hemp cultivars registered in the European Union: Tiborszállási (Hungary), Bialobrzeska (Poland) and Monoica (Hungary). The seeds were used for modified standard mustard germination test. The germination of hemp cultivars was tested using the hydroponics medium supplemented with leachate 25, 50, 75, 90 and 100%. The control seeds were growing on untreated nutrient medium under the same condition. The nature of germination of seeds was studied. Based on the obtained results, it can be concluded that the tested samples of leachate were toxic for hemp cultivars (C. sativa L.). Growth inhibition (%) at the studied samples ranged from −6.48 to 75.78%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Singh, A., Prasad, S.M.: Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int. J. Environ. Sci. Technol. 12, 353–366 (2015)

    Article  Google Scholar 

  2. Chandra, R., Yadav, S., Yadav, S.: Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecol. Eng. 98, 134–145 (2017)

    Article  Google Scholar 

  3. Wyszkowski, M., Radziemska, M.: Effects of chromium (III and VI) on spring barley and maize biomass yield and content of nitrogenous compounds. J. Toxicol. Environ. Health A 73, 1274–1282 (2010)

    Article  Google Scholar 

  4. Koda, E., Sieczka, A., Osiński, P.: Ammonium concentration and migration in groundwater in the vicinity of waste management site located in the neighborhood of protected areas of Warsaw, Poland. Sustainability 8, 1253 (2016)

    Article  Google Scholar 

  5. Vaverková, M.D., Adamcová, D., Radziemska, M., Voběrková, S., Mazur, Z., Zloch, J.: Assessment and evaluation of heavy metals removal from landfill leachate by Pleurotus ostreatus. Waste Biomass Valori. (2017). doi:10.1007/s12649-017-001

    Google Scholar 

  6. Gworek, B., Dmuchowski, W., Koda, E., Marecka, M., Baczewska, A.H., Brągoszewska, P., Sieczka, A., Osiński, P.: Impact of the municipal solid waste Łubna landfill on environmental pollution by heavy metals. Water. 8, 470 (2016)

    Article  Google Scholar 

  7. Baun, D.L., Christensen, T.H.: Speciation of heavy metals in landfill leachate: a review. Waste Manag. Res. 22, 3–23 (2004)

    Article  Google Scholar 

  8. Adamcová, D., Radziemska, M., Ridošková, A., Bartoň, S., Pelcová, P., Elbl, J., Kynický, J., Brtnický, M., Vaverková, M.D.: Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere 185, 1011–1018 (2017)

    Article  Google Scholar 

  9. Benskin, J.P., Li, B., Ikonomou, M.G., Grace, J.R., Li, L.Y.: Per- and polyfluoroalkyl substances in landfill leachate: patterns, time trends, and sources. Environ. Sci. Technol. 46, 11532–11540 (2012)

    Article  Google Scholar 

  10. Benskin, J.P., Ikonomou, M.G., Woudneh, M.B., Cosgrove, J.R.: Rapid characterization of perfluoroalkyl carboxylate, sulfonate, and sulfonamide isomers by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1247, 165–170 (2012)

    Article  Google Scholar 

  11. Yan, H., Cousins, I.T., Zhang, C., Zhou, Q.: Perfluoroalkyl acids in municipal landfill leachates from China: occurrence, fate during leachate treatment and potential impact on groundwater. Sci. Total Environ. 524–525, 23–31 (2015)

    Article  Google Scholar 

  12. Fuertes, I., Gómez-Lavín, S., Elizalde, M.P., Urtiaga, A.: Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates. Chemosphere. 168, 399–407 (2017)

    Article  Google Scholar 

  13. EPA: A citizen’s guide to phytoremediation. EPA 542-F-98-011. Technology Innovation Office, US Environmental Protection Agency, Dallas (1998)

    Google Scholar 

  14. Radziemska, M., Gusiatin, Z.M., Bilgin, A.: Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecol. Eng. 102, 490–500 (2017)

    Article  Google Scholar 

  15. Pandey, V.C., Bajpai, O., Singh, N.: Energy crops in sustainable phytoremediation. Renew. Sust. Energ. Rev. 54, 58–73 (2016)

    Article  Google Scholar 

  16. Linger, P., Ostwald, A., Haensler, J.: Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biol. Plant. 49, 567–576 (2005)

    Article  Google Scholar 

  17. Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B.D., Raskin, I.: Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31, 860–865 (1997)

    Article  Google Scholar 

  18. Kos, B., Grčman, H., Leštan, D.: Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil Environ. 49, 548–553 (2003)

    Article  Google Scholar 

  19. Wu, L.H., Luo, Y.M., Xing, X.R., Christie, P.: EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric. Ecosyst. Environ. 102, 307–318 (2004)

    Article  Google Scholar 

  20. Hajiboland, R.: An evaluation of the efficiency of cultural plants to remove heavy metals from growing medium. Plant Soil Environ. 51, 156–164 (2005)

    Article  Google Scholar 

  21. Li, H., Wang, Q., Cui, Y., Dong, Y., Christie, P.: Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil-a preliminary study. Sci. Total Environ. 339, 179–187 (2005)

    Article  Google Scholar 

  22. Grispen, V.M.J., Nelissen, H.J.M., Verkleij, J.A.C.: Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ. Pollut. 144, 77–83 (2006)

    Article  Google Scholar 

  23. Komárek, M., Tlustoš, P., Száková, J., Chrastný, J., Ettler, V.: The use of maize and poplar in chelant enhanced phytoextraction of lead from contaminated agricultural soil. Chemosphere. 67, 640–651 (2007)

    Article  Google Scholar 

  24. Neugschwandtner, R.W., Tlustoš, P., Komárek, M., Száková, J.: Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: laboratory versus field scale measures of efficiency. Geoderma 144, 446–454 (2008)

    Article  Google Scholar 

  25. Salentijn, E.M.J., Zhang, Q., Amaducci, S., Yang, M., Trindade, L.M.: New developments in fiber hemp (Cannabis sativa L.) breeding. Ind. Crops Prod. 68, 32–41 (2014)

    Article  Google Scholar 

  26. Chaohua, Ch., Gonggu, Z., Lining, Z., Chunsheng, G., Qing, T., Jianhua, Ch., Xinbo, G., Dingxiang, P., Jianguang, S.: A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Ind. Crops and Prod. 83, 61–65 (2016)

    Article  Google Scholar 

  27. Shi, G., Liu, C., Cui, M., Ma, Y., Cai, Q.: Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl. Biochem. Biotechnol. 168, 163–173 (2012)

    Article  Google Scholar 

  28. Slusarkiewicz-Jarzina, A., Ponitka, A., Kaczmarek, Z.: Influence of cultivar, explant source and plant growth regulator on callus induction and plant regeneration of Cannabis sativa L. Acta Biol. Craco. Series Bot. 47, 145–151 (2005)

    Google Scholar 

  29. Papadopoulou, E., Bikiaris, D., Chrysafis, K., Wladyka-Przybylak, M., Wesolek, D., Mankowski, J., Kolodziej, J., Baraniecki, P., Bujnowicz, K., Gronberg, V.: Value-added industrial products from bast fiber crops. Ind. Crops Prod. 68, 116–125 (2015)

    Article  Google Scholar 

  30. Adamcová, D., Vaverková, M.D.: Does composting of biodegradable municipal solid waste on the landfill body make sense? J. Ecol. Eng. 17, 30–37 (2016)

    Article  Google Scholar 

  31. Voběrková, S., Vaverková, M.D., Burešová, A., Adamcová, D., Vršanská, M., Kynický, J., Brtnický, M., Adam, V.: Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manag. 61, 157–164 (2017)

    Article  Google Scholar 

  32. Adamcová, D., Vaverková, M.D., Břoušková, E.: The toxicity of two types of sewage sludge form wastewater treatment plant for plants. J. Ecol. Eng. 17, 33–37 (2016)

    Article  Google Scholar 

  33. Hou, C., Lu, G., Zhao, L., Yin, P., Zhu, L.: Estrogenicity assessment of membrane concentrates from landfill leachate treated by the UV-Fenton process using a human breast carcinoma cell line. Chemosphere. 180, 192–200 (2017)

    Article  Google Scholar 

  34. Zhang, Q.Q., Tian, B.H., Zhang, X., Ghulam, A., Fang, C.R., He, R.: Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Manag. 33(11), 2277–2286 (2013)

    Article  Google Scholar 

  35. Slack, R.J., Gronow, J.R., Voulvoulis, N.: Household hazardous waste in municipal landfills: contaminants in leachate. Sci. Total Environ. 337, 119–137 (2005)

    Article  Google Scholar 

  36. Matejczyk, M., Płaza, G.A., Nałęcz-Jawecki, G., Ulfig, K., Markowska-Szczupak, A.: Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere 82(7), 1017–1023 (2011)

    Article  Google Scholar 

  37. Ghosh, P., Thakur, I.S., Kaushik, A.: Bioassays for toxicological risk assessment of landfill leachate: a review. Ecotoxicol. Environ. Saf. 141, 259–270 (2017)

    Article  Google Scholar 

  38. USEPA: Ecological effects test guidelines: seed germination/root elongation toxicity test. US Environmental Protection Agency, Environmental Research Laboratory, Washington (1996)

    Google Scholar 

  39. Novak, L.J., Holtze, K.E.: Overview of toxicity reduction and identification evaluations for use with small-scale tests. In: Blaise, C., Férard, J.F. (eds.) Small-scale freshwater toxicity investigations, pp. 169–213. Springer, Dordrecht (2005)

    Chapter  Google Scholar 

  40. Bakare, A.A., Mosuro, A.A., Osibanjo, O.: Effect of stimulated leachate on chromosomes and mitosis in roots of Allium cepa L. J. Environ. Biol. 21, 251–260 (2000)

    Google Scholar 

  41. Mor, S., Kaur, K., Khaiwal, R.: Growth behavior studies of bread wheat plant exposed to municipal landfill leachate. J. Environ. Biol. 34, 1083–1087 (2013)

    Google Scholar 

  42. Suliasih, B.A., Othman, M.S., Heng, L.Y., Salmijah, S.: Toxicity identification evaluation of landfill leachate taking a multispecies approach. Waste Manag. Environ. V. 140, 311–322 (2010)

    Google Scholar 

  43. Sang, N., Li, G.K.: Genotoxicity of municipal landfill leachate on root tips of Vicia faba. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 560(2), 159–165 (2004)

    Article  Google Scholar 

  44. Sang, N., Han, M., Li, G.K.: Landfill leachate affects metabolic responses of Zea mays L. seedings. Waste Manag. 30(5), 856–862 (2010)

    Article  Google Scholar 

  45. Srivastava, A.K., Kumar, R.R., Singh, A. K.: Cell cycle stage specific application of municipal landfill leachates to assess the genotoxicity in root meristem cells of barley (Hordeum vulgare). Environ. Sci. Pollut. Res. 21(24), 13979–13986 (2014)

    Article  Google Scholar 

  46. Žaltauskaitė, J., Čypaitė, A.: Assessment of landfill leachate toxicity using higher plants. Environ. Res. Eng. Manag. 46(4), 42–47 (2008)

    Google Scholar 

  47. Olivero-Verbel, J., Padilla-Bottet, C., De la Rosa, O.: Relationships between physicochemical parameters and the toxicity of leachates from a municipal solid waste landfill. Ecotoxicol. Environ. Saf. 70, 294–299 (2008)

    Article  Google Scholar 

  48. Pablos, M.V., Martini, F., Fernandez, C., Babin, M.M., Herraez, I., Miranda, J., Martinez, J., Carbonell, G., San-Segundo, L., Garcia-Hortiguela, P., Tarazona, J.V.: Correlation between physicochemical and ecotoxicological approaches to estimate landfill leachates toxicity. Waste Manag. 31, 1841–1847 (2011)

    Article  Google Scholar 

  49. Baker, A., Brooks, R.: Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery. 1, 81–126 (1989)

    Google Scholar 

  50. Ahmad, R., Tehsin, Z., Tanvir Malik, S.T., Asad, S.A., Shahzad, M., Bilal, M., Shah, M.M., Khan, S.A.: Phytoremediation potential of hemp (Cannabis sativa L.): identification and characterization of heavy metals responsive genes. Clean-Soil Air Water. 44, 195–201 (2016)

    Article  Google Scholar 

  51. Adler, A., Karacic, A., Weih, M.: Biomass allocation and nutrient use in fast-growing woody and herbaceous perennials used for phytoremediation. Plant Soil. 305, 189–206 (2008)

    Article  Google Scholar 

  52. Sinha, S., Gupta, A.K., Bhatt, K., Pandey, K., Rai, U.N., Singh, K.P.: Distribution of metals in the edible plants grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: relation with physico-chemical properties of the soil. Environ. Monit. Assess. 115, 1–22 (2006)

    Article  Google Scholar 

  53. Barbosa, B., Costa, J., Fernando, A.L., Papazoglou, E.G.: Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Ind. Crop. Prod. 68, 17–23 (2015)

    Article  Google Scholar 

  54. Davison, L., Pont, D., Bolton, K., Headley, T.: Dealing with nitrogen in subtropical Australia: seven case studies in the diffusion of ecotechnological innovation. Ecol. Eng. 28, 213–223 (2006)

    Article  Google Scholar 

  55. Nivala, J., Hoos, M.B., Cross, C., Wallace, S., Parkin, G.: Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Sci. Total Environ. 380, 19–27 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the IGA FA MENDELU No. TP 5/2017. Authors thank Mr. Hermes Villafaña (Language Coach) for the linguistic comments on manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Daria Vaverková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaverková, M.D., Zloch, J., Adamcová, D. et al. Landfill Leachate Effects on Germination and Seedling Growth of Hemp Cultivars (Cannabis Sativa L.). Waste Biomass Valor 10, 369–376 (2019). https://doi.org/10.1007/s12649-017-0058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0058-z

Keywords

Navigation