Skip to main content
Log in

Production of Proteases in a Novel Trickling Tray Bioreactor

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A novel trickling tray bioreactor was constructed for the production of an alkaline protease by Aspergillus oryzae PTCC 5164. A mixture of rice bran, wheat bran, soybean meal, and wheat flour with the respective mass ratio of 3, 1, 0.6 and 0.4 was used as the substrate. The substrate was spread on the trays and inoculated with spores of the fungus. After the initial growth, a solution was trickled on the trays to wash the produced protease out of the bioreactor during the fermentation. The process continued for 5 days and produced the maximum value of 748 U per gram of dry substrate (748 U/g ds ± 38.72) of the alkaline protease in the trickling medium on the third day, with a gradual decrease in enzyme amount thereafter. The performance of the trickling tray bioreactor was compared with the performance of conventional solid state fermentation conducted in flasks. In the conventional solid state fermentation the maximum value of 530 U/g ds ± 21.22 of the alkaline protease was harvested on the third day. Similar to the trickling tray fermentation a gradual decrease in the enzyme amount was observed after the third day. The results proved that the extraction of the enzyme from the substrate during fermentation could stimulate further enzyme production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Sevinc, N., Demirkan, E.: Production of protease by Bacillus sp. N-40 isolated from soil and its enzymatic properties. J. Biol. Environ. Sci. 5(14), 95–103 (2011)

    Google Scholar 

  2. Yadav, S.K., Bisht, D., Shikha, S., Darmwal, N.S.: Oxidant and solvent stable alkaline protease from Aspergillus flavus and its characterization. Afr. J. Biotechnol. 10(43), 8630–8640 (2013). doi:10.5897/AJB10.1611

    Google Scholar 

  3. Muthulakshmi, C., Gomathi, D., Kumar, D.G., Ravikumar, G., Kalaiselvi, M., Uma, C.: Production, purification and characterization of protease by Aspergillus flavus under solid state fermentation. Jordan J. Biol. Sci. 4(3), 137–148 (2011)

    Google Scholar 

  4. Gupta, A., Roy, I., Patel, R.K., Singh, S.P., Khare, S.K., Gupta, M.N.: One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp. J. Chromatogr. A 1075(1–2), 103–108 (2005). doi:10.1016/j.chroma.2005.03.127

    Article  Google Scholar 

  5. Syed, R., Roja Rani, S., Masoodi, T.A., Shafi, G., Alharbi, K.: Functional analysis and structure determination of alkaline protease from Aspergillus flavus. Bioinformation 8(4), 175 (2012). doi:10.6026/97320630008175

    Article  Google Scholar 

  6. Vilhelmsson, O.: The state of enzyme biotechnology in the fish processing industry. Trends Food Sci. Technol. 8(8), 266–270 (1997). doi:10.1016/S0924-2244(97)01057-1

    Article  Google Scholar 

  7. Rao, M.B., Tanksale, A.M., Ghatge, M.S., Deshpande, V.V.: Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62(3), 597–635 (1998)

    Google Scholar 

  8. Kumara swamy, M., Kashyap, S.S.N., Vijay, R., Tiwari, R., Anuradha, M.: Production and optimization of extracellular protease from bacillus sp. isolated from soil. Int. J. Adv. Biotechnol. Res. 3(2), 564–569 (2012)

    Google Scholar 

  9. Murthy, P.S., Naidu, M.M.: Protease production by Aspergillus oryzae in solid-state fermentation utilizing coffee by-products. World Appl. Sci. J. 8, 199–205 (2010)

    Google Scholar 

  10. Abe, K., Gomi, K., Hasegawa, F., Machida, M.: Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia 162(3), 143–153 (2006). doi:10.1007/s11046-006-0049-2

    Article  MATH  Google Scholar 

  11. Kumura, H., Ishido, T., Shimazaki, K.: Production and partial purification of proteases from Aspergillus oryzae grown in a medium based on whey protein as an exclusive nitrogen source. J. Dairy Sci. 94(2), 657–667 (2011). doi:10.3168/jds.2010-3587

    Article  Google Scholar 

  12. Rodríguez Couto, S., Sanromán, M.A.: Application of solid-state fermentation to ligninolytic enzyme production. Biochem. Eng. J. 22(3), 211–219 (2005). doi:10.1016/j.bej.2004.09.013

    Article  Google Scholar 

  13. Couto, S.R., Sanromán, M.Á.: Application of solid-state fermentation to food industry—a review. J. Food Eng. 76(3), 291–302 (2006). doi:10.1016/j.jfoodeng.2005.05.022

    Article  Google Scholar 

  14. Suryanarayan, S.: Current industrial practice in solid state fermentations for secondary metabolite production: the Biocon India experience. Biochem. Eng. J. 13(2–3), 189–195 (2003). doi:10.1016/S1369-703X(02)00131-6

    Article  Google Scholar 

  15. de Castro, R.J.S., Sato, H.H.: Production and biochemical characterization of protease from Aspergillus oryzae: an evaluation of the physical–chemical parameters using agroindustrial wastes as supports. Biocatal. Agric. Biotechnol. 3(3), 20–25 (2014). doi:10.1016/j.bcab.2013.12.002

    Google Scholar 

  16. Agrawal, D., Patidar, P., Banerjee, T., Patil, S.: Production of alkaline protease by Penicillium sp. under SSF conditions and its application to soy protein hydrolysis. Process Biochem. 39(8), 977–981 (2004). doi:10.1016/S0032-9592(03)00212-7

    Article  Google Scholar 

  17. Aikat, K., Bhattacharyya, B.C.: Protease extraction in solid state fermentation of wheat bran by a local strain of Rhizopus oryzae and growth studies by the soft gel technique. Process Biochem. 35(9), 907–914 (2000). doi:10.1016/S0032-9592(99)00148-X

    Article  Google Scholar 

  18. Chutmanop, J., Chuichulcherm, S., Chisti, Y., Srinophakun, P.: Protease production by Aspergillus oryzae in solid-state fermentation using agroindustrial substrates. J. Chem. Technol. Biotechnol. 83(7), 1012–1018 (2008)

    Article  Google Scholar 

  19. Samarntarn, W., Cheevadhanarak, S., Tanticharoen, M.: Production of alkaline protease by a genetically engineered Aspergillus oryzae U1521. J. Gen. Appl. Microbiol. 45(3), 99–103 (1999)

    Article  Google Scholar 

  20. Durand, A.: Bioreactor designs for solid state fermentation. Biochem. Eng. J. 13(2), 113–125 (2003). doi:10.1016/S1369-703X(02)00124-9

    Article  MathSciNet  Google Scholar 

  21. Ruiz, H.A., Rodríguez-Jasso, R.M., Rodríguez, R., Contreras-Esquivel, J.C., Aguilar, C.N.: Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem. Eng. J. 65, 90–95 (2012). doi:10.1016/j.bej.2012.03.007

    Article  Google Scholar 

  22. Lobo, R., Revah, S., Viveros-Garcia, T.: An analysis of a trickle-bed bioreactor: carbon disulfide removal. Biotechnol. Bioeng. 63(1), 98–109 (1999)

    Article  Google Scholar 

  23. Kirchner, K., Gossen, C., Rehm, H.-J.: Purification of exhaust air containing organic pollutants in a trickle-bed bioreactor. Appl. Microbiol. Biotechnol. 35(3), 396–400 (1991). doi:10.1007/BF00172732

    Google Scholar 

  24. Hartmans, S., Tramper, J.: Dichloromethane removal from waste gases with a trickle-bed bioreactor. Bioprocess. Eng. 6(3), 83–92 (1991). doi:10.1007/BF00369060

    Article  Google Scholar 

  25. Schönduve, P., Sara, M., Friedl, A.: Influence of physiologically relevant parameters on biomass formation in a trickle-bed bioreactor used for waste gas cleaning. Appl. Microbiol. Biotechnol. 45(1–2), 286–292 (1996). doi:10.1007/s002530050685

    Article  Google Scholar 

  26. Lenz, J., Hölker, U.: Trickle-film processing: an alternative for producing fungal enzymes. BIOforum Eur 6, 55–57 (2004)

    MATH  Google Scholar 

  27. Fukushima, Y., Itoh, H., Fukase, T., Motai, H.: Continuous protease production in a carbon-limited chemostat culture by salt tolerant Aspergillus oryzae. Appl. Microbiol. Biotechnol. 30(6), 604–608 (1989). doi:10.1007/BF00255366

    Google Scholar 

  28. Chancharoonpong, C., Hsieh, P.-C., Sheu, S.-C.: Effect of different combinations of soybean and wheat bran on enzyme production from Aspergillus oryzae S. APCBEE Procedia 2, 68–72 (2012). doi:10.1016/j.apcbee.2012.06.013

    Article  Google Scholar 

  29. Anson, M.L.: The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J. Gen. Physiol. 22(1), 79–89 (1938)

    Article  Google Scholar 

  30. Paranthaman, R., Alagusundaram, K., Indhumathi, J.: Production of protease from rice mill wastes by Aspergillus niger in solid state fermentation. World J. Agric. Sci. 5(3), 308–312 (2009)

  31. Rani, M.R., Prasad, N., Sambasivarao, K.: Optimization of cultural conditions for the production of alkaline protease from a mutant Aspergillus Flavus AS2. Asian J. Exp. Biol. Sci. 3, 565–576 (2012)

    Google Scholar 

  32. Sumantha, A., Deepa, P., Sandhya, C., Szakacs, G., Soccol, C.R., Pandey, A.: Rice bran as a substrate for proteolytic enzyme production. Braz. Arch. Biol. Technol. 49(5), 843–851 (2006)

    Article  Google Scholar 

  33. Maghsoodi, V., Kazemi, A., Nahid, P., Yaghmaei, S., Sabzevari, M.A.: Alkaline protease production by immobilized cells using B. licheniformis. Sci. Iran. 20(3), 607–610 (2013). doi:10.1016/j.scient.2013.01.007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Fazaelipoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fath, M., Fazaelipoor, M.H. Production of Proteases in a Novel Trickling Tray Bioreactor. Waste Biomass Valor 6, 475–480 (2015). https://doi.org/10.1007/s12649-015-9371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9371-6

Keywords

Navigation