Skip to main content
Log in

Methodology for Extraction of Phenolic Compounds of Bio-oil from Agricultural Biomass Wastes

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Bio-oil is a mixture of nearly 300 types of organic compounds, including phenols. Phenols are produced during oil refinement and are usually used as fuel additives, food antioxidants and in the synthesis of other chemicals. This study is mainly focused on the extraction of phenolic compounds from bio-oil produced during the pyrolysis of agroindustrial wastes. Bio-oil samples were produced by intermediated pyrolysis of oil from palm empty fruit bunch at 578 °C for 45.6 s using a fixed bed reactor. Under these conditions, the phenol fraction was 13.14 wt%. Two different extraction methodologies were used to obtain a higher phenol fraction of bio-oil: liquid–liquid extraction and reactive extraction. In the first method, an initial liquid–liquid extraction was performed to solubilize the bio-oil in a liquid phase. A second liquid–liquid extraction was subsequently performed with three different organic solvents to maximize the phenolic composition of the fraction. In contrast, the reactive extraction methodology was performed using a NaOH solution to produce phenolates, which are more soluble in water, and thus favor phenol extraction. The resulting phenol extraction yields were not higher than 30 wt% (i.e., a ratio of 1:3.5 of bio-oil and NaOH solution) for the reactive extraction; in contrast, for the liquid–liquid extraction, these yields rose above 68 wt%. The operating conditions favoring this extraction yield included a first extraction with a 5:1 dichloromethane/bio-oil mixture followed by a second extraction with a 10:1 ethyl acetate/concentrated dichloromethane bio-oil mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012)

    Article  Google Scholar 

  2. Lerkkasemsan, N., Achenie, L.E.K.: Pyrolysis of biomass—fuzzy modeling. Renew. Energy 66, 747–758 (2014)

    Article  Google Scholar 

  3. Vecino-Mantilla, S., Gauthier-Maradei, P., Alvarez-Gil, P., Tarazona-Cárdenas, S.: Comparative study of bio-oil production from sugarcane bagasse and palm empty fruit bunch: yield optimization and bio-oil characterization. J. Anal. Appl. Pyrol. 108, 284–294 (2014)

    Article  Google Scholar 

  4. Czernik, S., Bridgwater, A.V.: Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18, 590–598 (2004)

    Article  Google Scholar 

  5. Özbay, N., Apaydın-Varol, E., Uzun, B.B., Pütün, A.E.: Characterization of bio-oil obtained from fruit pulp pyrolysis. Energy 33, 1233–1240 (2008)

    Article  Google Scholar 

  6. Heoa, H.S., Parka, H.J., Yimb, J.H., Sohnc, J.M., Park, J., Kime, S.S., Ryuf, C., Jeong, J.K., Parka, Y.K.: Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens. Bioresour. Technol. 101, 3672–3677 (2010)

    Article  Google Scholar 

  7. Oasmaa, A., Meie, D.: Norms and standards for fast pyrolysis liquids 1. Round robin test. J. Anal. Appl. Pyrol. 73, 323–334 (2005)

    Article  Google Scholar 

  8. Li, L., Zhang, H.: Preparing levoglucosan derived from waste material by pyrolysis. Energy Sources 26, 1053–1059 (2004)

    Article  Google Scholar 

  9. Busca, G., Berardinelli, S., Arrighi, L.: Technologies for the removal of phenol from fluid streams: a short review of recent developments. J. Hazard. Mater. 160, 265–288 (2008)

    Article  Google Scholar 

  10. Guillén, M.D., Ibargoitia, M.L.: New compounds with potential antioxidant and organoleptic properties, detected for the first time in liquid smoke flavoring preparations. J. Agric. Food Chem. 46, 1276–1285 (1998)

    Article  Google Scholar 

  11. Kawser, J., Ani, F.N.: Oil pal shell as a source of phenol. J. Oil Palm Res. 12, 86–94 (2000)

    Google Scholar 

  12. Greener INDUSTRY Website: http://www.greener-industry.org.uk/pages/phenol/7PhenolProdMethods2.htm. Accessed 12 Dec 2013

  13. Weber, M., Weber, M.: Phenols. In: Pilato, L. (ed.) Phenolics Resins: A Century Progress, pp. 9–23. Springer, USA (2010)

    Chapter  Google Scholar 

  14. Amen-Chen, C., Pakdel, H., Roy, C.: Production of monomeric phenol by thermodynamical conversion of biomass: a review. Bioresour. Technol. 79, 277–299 (2001)

    Article  Google Scholar 

  15. Murwanashyaka, J.N., Pakdel, H., Roy, C.: Seperation of syringol from birch wood-derived vacuum pyrolysis oil. Sep. Purif. Technol. 24, 155–165 (2001)

    Article  Google Scholar 

  16. Achladas, G.E.: Analysis of biomass pyrolysis liquids separation and characterization of phenols. J. Chromatogr. 542, 263–275 (1991)

    Article  Google Scholar 

  17. Amen-Chen, C., Pakdel, H., Roy, C.: Separation of phenols from eucalyptus. Biomass Bioenergy 13, 25–37 (1997)

    Article  Google Scholar 

  18. Li, J., Wang, C., Yang, Z.: Production and separation of phenols from biomass-derived bio-petroleum. J. Anal. Appl. Pyrol. 89, 218–224 (2010)

    Article  Google Scholar 

  19. Zilnik, L.F., Jazbinsek, A.: Recovery of renewable phenolic fraction from pyrolysis oil. Sep. Purif. Technol. 86, 157–170 (2012)

    Article  Google Scholar 

  20. Treybal, R.: Operaciones de Transferencia de Masa. In: García, Rodriguez.A., Lozano, F. (eds.) Extracción Líquida, pp. 529–621. McGraw-Hill, Mexico (1993)

    Google Scholar 

  21. Palma, M., Paiva, J., Zilli, M., Converti, A.: Batch phenol removal from methyl isobutyl ketone by liquid–liquid extraction with chemical reaction. Chem. Eng. Process. 46, 764–768 (2007)

    Article  Google Scholar 

  22. Kulprathipanja, S.: Reactive Separation Process, Chapter 3, p. p. 51. Taylor and Francis, New York (2002). ISBN 1-56032-825-8

    Google Scholar 

  23. Zha, F.F., Fanea, A.G., Fella, C.J.D.: Phenol removal by supported liquid membranes. Sep. Sci. Technol. 29, 2317–2343 (1994)

    Article  Google Scholar 

  24. Walters, F.H., Parker, L.R., Morgan, S.L., Deming, S.N.: Sequential Simplex Optimization: A Technique for Improving Quality and Productivity in Research, Development, and Manufacturing. CRC Press, Boca Raton (1991)

    Google Scholar 

  25. Katritzky, A., Ignatchenko, E., Barcock, R., Lobanov, V.: Prediction of gas chromatographic retention times and response factors using a general quantitative structure–property relationship treatment. Anal. Chem. 66, 1799–1807 (1994)

    Article  Google Scholar 

  26. Oasmaa, A., Kuoppala, E., Solantausta, Y.: Fast pyrolysis of forestry residue. 2. Physicochemical composition of product liquid. Energy Fuels 17, 433–443 (2003)

    Article  Google Scholar 

  27. Das, D.D., Schnitzer, M.I., Monreal, C.M., Mayer, P.: Chemical composition of acid–base fractions separated from bio-oil derived by fast pyrolysis of chicken manure. Bioresour. Technol. 100, 6524–6532 (2009)

    Article  Google Scholar 

  28. Garcia-Perez, M., Chaalac, A., Pakdel, H., Kretschmer, D., Roy, C.: Characterization of bio-oils in chemical families. Biomass Bioenergy 31, 222–242 (2007)

    Article  Google Scholar 

  29. Vitasari, C.R., Meindersma, G.W., Haan, A.B.: Water extraction of pyrolysis oil: the first step for the recovery of renewable chemicals. Bioresour. Technol. 102, 7204–7210 (2011)

    Article  Google Scholar 

  30. Effendi, A., Gerhauser, H., Bridgwater, A.V.: Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renew. Sustain. Energy 12, 2092–2116 (2008)

    Article  Google Scholar 

  31. Kelley, S.S., Wang, X.-M., Myers, M.D., Johnson, D.K., Scahill, J.W.: In: Bridgwater, A.V., Boocock, D.G.B. (eds.) Developments in Thermochemical Biomass Conversion, vol. 1, pp. 557–572. Blackie Academic and Professional, London (1997)

    Chapter  Google Scholar 

  32. Scholze, B., Meier, D.: Characterization of the water insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups. J. Anal. Appl. Pyrol. 60, 41–54 (2001)

    Article  Google Scholar 

  33. Boonpo, J., Udomsap, P., Yoosuk, B., Sukkasi, S.: Towards commercialization of alternative biofuel: improving the stability of pyrolysis liquid by physical fractionation. In: The Second TSME International Conference on Mechanical Engineering, p. 8, Thailand (2011)

  34. Greminger, D.C., Burns, G.P., Lynn, S., Hanson, D.N., King, C.J.: Solvent extraction of phenols from water. Ind. Eng. Chem. Process Des. Dev. 21, 51–54 (1982)

    Article  Google Scholar 

  35. Toth, L.: Separation and analysis of phenol fractions from smokehouse. Fleischwjirtsch 60, 728–736 (1980)

    Google Scholar 

  36. Escalante, H.: Atlas del potencial energético de la biomasa residual en Colombia. Universidad Industrial de Santander, Ediciones (2010)

    Google Scholar 

  37. GarcíaPérez, M., Chaala, A., Roy, C.: Vacuum pyrolysis of sugarcane bagasse. J. Anal. Appl. Pyrol. 65, 111–136 (2002)

    Article  Google Scholar 

  38. Kim, S.W., Koo, B.S., Ryu, J.W., Lee, S.J., Kim, C.J., Lee, D.H., Kim, G.R., Choi, S.: Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed. Fuel Process. Technol. 108, 118–124 (2013)

    Article  Google Scholar 

  39. Misson, M., Haron, R., Kamaroddin, M.F.A., Amin, N.A.S.: Pre-treatment of empty palm fruit bunch for production of chemicals via catalytic pyrolysis. Bioresour. Technol. 100, 2867–2873 (2009)

    Article  Google Scholar 

  40. Ma, A.N., Yusof Basiron, M.P.O.B.: Biomass energy from the palm oil Industry in Malaysia. Ingenieur 27, 18–25 (2005)

    Google Scholar 

  41. Vispute, T.: Pyrolysis Oils: Characterization, Stability Analysis and Catalytic Upgrading to Fuels and Chemicals. University of Massachusetts, Amherst (2011)

    Google Scholar 

  42. Imam, T., Capareda, S.: Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J. Anal. Appl. Pyrol. 93, 170–177 (2012)

    Article  Google Scholar 

  43. Open Notebook Science Challenge Website: Phenol. http://showme.physics.drexel.edu/onsc/models/solventselector.php?csids=971&limreact=0&limprod=0&bp=0&washes=2&e=. Accessed 12 Dec 2013

  44. Open Notebook Science Challenge Website: o-Cresol. http://showme.physics.drexel.edu/onsc/models/solventselector.php?csids=13835772&limreact=0&limprod=0&bp=0&washes=2&e=. Accessed 12 Dec 2013

  45. Open Notebook Science Challenge Website: p-Cresol. http://showme.physics.drexel.edu/onsc/models/solventselector.php?csids=13839082&limreact=0&limprod=0&bp=0&washes=0. Accessed 12 Dec 2013

  46. Won, K.W., Prausnitz, J.M.: Distribution of phenolic solutes between water and polar organic solvents. J. Chem. Thermodyn. 7, 661–670 (1975)

    Article  Google Scholar 

  47. Yur’ev, A., Yu, L., Kiprianov, I., Yudkevich, Y.D.: Separation of phenols from soluble resin with acetate solvents. Gidroliz. Lesokhim. Promysh. 8, 21 (1977)

    Google Scholar 

  48. McQuarrie, D.A., Rock, P.A., Gallogly, E.B.: General Chemistry. University Science Books, Mill Valley (2011). ISBN 978-1891389603

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Universidad Industrial de Santander, Vicerrectoría de Investigación y Extensión, (Project No. 5451), the Departamento Administrativo de Ciencia, Tecnología e Innovación-COLCIENCIAS and its program “Jovenes Investigadores e Innovadores 2012,” which financially supported this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Gauthier-Maradei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantilla, S.V., Manrique, A.M. & Gauthier-Maradei, P. Methodology for Extraction of Phenolic Compounds of Bio-oil from Agricultural Biomass Wastes. Waste Biomass Valor 6, 371–383 (2015). https://doi.org/10.1007/s12649-015-9361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9361-8

Keywords

Navigation