Skip to main content
Log in

Clustering and finite size effects in a two-species exclusion process

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We study a two-species totally asymmetric exclusion process (TASEP) in 1D lattice in which the particles of both species move stochastically in opposite directions (with rate v) and switch directions stochastically (with rate \(\alpha \)) while adjacent a particle of either species. We focus on the cluster size distribution P(m), where a cluster is taken to be a contiguous set of sites occupied by either species, as a function of \(Q=v/\alpha \). For a total density \(\rho \) of particles, in the limit \(Q \rightarrow 0\), the cluster size distribution is shown to be \(P(m) = \left( 1/\rho - 1\right) e^{-m/\ln \rho }\) and the mean cluster size \(\langle m \rangle = 1/(1-\rho )\), results which are independent of Q and are identical to those for the simple exclusion process. By contrast, in the opposite limit, \(Q\gg 1\), we find the average cluster size, \(\langle m \rangle \propto Q^{1/2}\)—similar to the that for the persistent exclusion process (PEP), although the cluster size distributions are different in both limits. We further find that, for a finite system with L sites, the probability distribution of cluster sizes exhibits a distinct peak which corresponds to the formation of a single cluster of size \(m_{\rm{s}} = \rho L\). However, this peak vanishes in the thermodynamic limit \( L \rightarrow \infty \). Interestingly, the probability of this largest size cluster, \(P(m_{\rm{s}})\), for different \(L, \rho \) and Q exhibits data collapse in terms of the scaled variable \(Q_{\rm{s}}\equiv Q/L^2 \rho (1-\rho )\). The statistical features of the clustering observed for this minimal model may be relevant for active particle systems in 1D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G M Schutz J. Phys. A 36 R339 (2003)

    Article  ADS  Google Scholar 

  2. M R Evans, D P Foster, C Godreche and D Mukamel Phys. Rev. Lett. 74 208 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. M R Evans and T Hanney J. Phys. A 38 R195 (2005)

    Article  ADS  CAS  Google Scholar 

  4. M R Evans, Y Kafri, H M Koduvely and D Mukamel Phys. Rev. Lett. 80 425 (1998)

    Article  ADS  CAS  Google Scholar 

  5. S Muhuri EPL 106 28001 (2014)

    Article  ADS  Google Scholar 

  6. Y Kafri, E Levine, D Mukamel, G M Schutz and J Torok Phys. Rev. Lett. 89 035702 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. T Midha, A B Kolomeisky and A K Gupta J. Stat. Mech. 043205 (2018)

  8. M E Cates and J Tailleur Annu. Rev. Condens. Matter Phys. 6 219 (2015)

    Article  ADS  CAS  Google Scholar 

  9. A Parmegianni, T Franosch and E Frey Phys. Rev. Lett. 90 086601 (2003)

    Article  ADS  Google Scholar 

  10. S Muhuri and I Pagonabarraga Phys. Rev. E 82 021925 (2010)

    Article  ADS  Google Scholar 

  11. Y Aghababaie, G I Menon and M Plischke Phys. Rev. E 59 2578 (1999)

    Article  ADS  CAS  Google Scholar 

  12. S Muhuri and I Pagonabarraga J. Stat. Mech. (Theo. and Exp.) P11011 (2011)

  13. T Chou, K Mallick, R K P Zia Rep. Prog. Phys. 74 116601 (2011)

    Article  ADS  Google Scholar 

  14. S Muhuri, L Shagolsem and M Rao Phys. Rev. E 84 031921 (2011)

    Article  ADS  Google Scholar 

  15. K E P Sugden, M R Evans, W C K Poon and N D Read Phys. Rev. E 75 031909 (2007)

    Article  ADS  CAS  Google Scholar 

  16. S Muhuri EPL 101 38001 (2013)

    Article  ADS  CAS  Google Scholar 

  17. B Shinde, S Khan and S Muhuri Phys. Rev. Res. 2 023111 (2020)

    Article  CAS  Google Scholar 

  18. P Castro, F M Rocha, S Diles, R Soto and P Sollich Soft Matter 17 9926 (2021)

    Article  ADS  PubMed  Google Scholar 

  19. R Soto and R Golestanian Phys. Rev. E 89 0127706 (2014)

    Article  Google Scholar 

  20. M A Welte Curr. Biol. 14 R525 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. R L Morris and P J Hollenbeck J. Cell. Sc. 104 917 (1993)

    Article  Google Scholar 

  22. M J I Müller, S Klumpp and R Lipowsky Proc. Nat. Acad. Sci. 105 4609 (2008)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. P Puri, N Gupta, S Naskar, A Nair, S Chandel, A Chaudhuri, M K Mitra and S Muhuri Phys. Rev. Res. 1 023019 (2019)

    Article  CAS  Google Scholar 

  24. P Illien, C Blois, Y Liu, M Linden and O Dauchot Phys. Rev. E 101 040602(R) (2020)

    Article  ADS  Google Scholar 

  25. T Bertrand, J d’Alessandro, A Maitra, B Mercier, R-M Mège, B Ladoux and R Voituriez arXiv:2012.00785 (2020)

  26. A Alert and X Trepat Annu. Rev. Condens. Matter Phys. 11 77 (2020)

    Article  ADS  Google Scholar 

  27. A Roycroft and R Mayor Trends in Cell Biol. 25 373 (2015)

    Article  Google Scholar 

  28. M A Fernandez-Rodriguez, F Grillo, L Alvarez, M Rathlef, I Buttinoni, G Volpe and L Isa Nat. Commun. 11 4223 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. B Afra, S Karimnejad, A A Delouei and A Tarokh Ocean. Eng. 250 111025 (2022)

    Article  Google Scholar 

  30. B Afra, A A Delouei and A Tarokh Int. J. Mech. Sci. 234 107693 (2022)

    Article  Google Scholar 

  31. S Karimnejad, A A Delouei and F He Math. Methods Appl. Sci. 46 6767 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  32. A A Delouei, S Karimnejad and F He Comput. Math. Appl. 121 115 (2022)

    MathSciNet  Google Scholar 

  33. O Pulkkinen and J Merikoski Phys. Rev. E 64 056114 (2001)

    Article  ADS  CAS  Google Scholar 

  34. S N Majumdar, S Krishnamurthy and M Barma Phys. Rev. Lett. 81 3691 (1998)

    Article  ADS  CAS  Google Scholar 

  35. S N Majumdar, S Krishnamurthy and M Barma J. Stats. Phys. 99 1 (2000)

    Article  ADS  Google Scholar 

  36. R Rajesh and S N Majumdar Phys. Rev. E 63 036114 (2001)

    Article  ADS  CAS  Google Scholar 

  37. Y Kafri, E Levine, D Mukamel, G M Schütz and R D Willmann Phys. Rev. E 68 035101 (2003)

    Article  ADS  CAS  Google Scholar 

  38. U Basu Phys. Rev. E 94 062137 (2016)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  39. F Ginot, I Theurkauff, F Detcheverry, C Ybert and C Cottin-Bizonne Nat. Commun. 9 1 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support is acknowledged by SM for SERB project No. EMR /2017/001335. SM also acknowledges financial support and hospitality for visit to ICTP, Trieste under the Associateship program, where part of the work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipto Muhuri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chacko, J., Muhuri, S. & Tripathy, G. Clustering and finite size effects in a two-species exclusion process. Indian J Phys 98, 1553–1560 (2024). https://doi.org/10.1007/s12648-023-02880-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02880-z

Keywords

Navigation