Skip to main content
Log in

Cosmological model in Brans–Dicke theory of gravitation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, the Bianchi type VI cosmological model in presence of perfect fluid is investigated in Brans–Dicke [1] scalar–tensor theory of gravitation. Exact solutions of field equations are obtained by the law of Hubble parameter, as it gives constant value of deceleration parameter. Also, we studied some observational parameters such as jerk parameter, redshift, Look-back time, Luminosity distance redshift and angular diameter distance. Stability of these model is discussed with the help of the square of sound speed relation. Some physical and kinematical properties of the model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C Brans and R H Dicke Phys Rev. 124 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  2. S Surendra Singh and Yohenba Soibam Int. J. Geom. Methods Modern Phys. 18 2150141 (2021) https://doi.org/10.1142/S0219887821501413

    Article  ADS  Google Scholar 

  3. John D Barrow Class. Quant. Grav. 37 065014 (2020) https://doi.org/10.1088/1361-6382/ab7074

    Article  ADS  Google Scholar 

  4. D C Maurya and R Zia Phys. Rev. D. 100 23 (2019)

    Google Scholar 

  5. S D Katore and D V Kapse Adv. High Ener. Phys. 2018 1 (2018) https://doi.org/10.1155/2018/2854567

    Article  Google Scholar 

  6. G. Kofinas arXiv:1510.06845v4[gr-qc] (2016)

  7. H Çaglar, S Aygun, Can Aktas, D Taser Balkan Phys. Lett. 22 221014 (2014)

  8. J K Singh N K Sharm Astrop. Space Sci. 327 293 (2010) https://doi.org/10.1007/s10509-010-0319-9

    Article  ADS  Google Scholar 

  9. E A Hegazy Iran. J. Sci. Technol. Trans. A: Sci. 43 663 (2019)

    Article  MathSciNet  Google Scholar 

  10. M Dewari IOSR J. Appl. Phys. 10 1 (2018)

    Google Scholar 

  11. B Saha arXiv:1209.6029v1 [gr-qc] (2013)

  12. S P Kandalkar, P P Khade and S P Gawande Bulg. J. Phys. 38 145 (2011)

    MathSciNet  Google Scholar 

  13. S Ozkurt and S Aygun Pramana J. Phys. 88 66 (2017)

    Article  ADS  Google Scholar 

  14. C Liu and C Wei arXiv:1810.11788v3 [gr-qc] (2021)

  15. G Ballesteros D Comelli L. Pilo Phys. Rev. D 94 025034 (2016)

    Article  ADS  Google Scholar 

  16. A Paliathanasis, M Tsamparlis, S Basilakos and J D Barrow Phys. Rev. D. 93 043528 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. S Chakraborty Class. Quant. Grav. 32 075007 (2015)

    Article  ADS  Google Scholar 

  18. S Hansraj and B Chilambwe Phys. J. C 75 277 (2015) https://doi.org/10.1140/epjc/s10052-015-3504-8

    Article  ADS  Google Scholar 

  19. G A Rave Franco and C E Rivera Jackson Levi Said Eur. Phys. J. C. 80 677 (2020)

    Article  ADS  Google Scholar 

  20. S D Katore and R J Baxi Int. J. Phys. 16 105 (2019)

    Google Scholar 

  21. P Shah and G C Samanta Eur Phys J C 79 414 (2019)

    Article  ADS  Google Scholar 

  22. R Gannouji and N Dadhich Class. Quant. Grav. 31 16 (2013)

    Google Scholar 

  23. N Sarkar, S Sarkar and K N Singh F Rahaman Eur. Phys. J. C. 80 255 (2020)

    Article  ADS  Google Scholar 

  24. M C F Faria, C J A P Martins, F Chiti and B S A Silva Astron. Astrophys. 625 A127 (2019)

    Article  ADS  Google Scholar 

  25. H M Courtois, Y Hoffman, R Brent Tully, S Gottlober Astrophys. J. 744 43 (2012)

    Article  ADS  Google Scholar 

  26. L D Landau and E M Lifshitz Fourth Revised English Edition Course of Theoretical Physics Vol.2. “The classical Theory of Fields”. (Oxfore: Published by Butterworth Heinemann)

  27. O Akarsu, T Dereli arXiv:1102.0915v3 [gr-qc] (2011)

  28. M S Berman Nuovo. Cimento. B. 74 182 (1983)

    Article  ADS  Google Scholar 

  29. Y Hoffman, A Eldar, S Zaroubi and A Dekel arXiv:astro-ph/0102190 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Wath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimkar, A.S., Hadole, S.R. & Wath, J.S. Cosmological model in Brans–Dicke theory of gravitation. Indian J Phys 97, 1633–1640 (2023). https://doi.org/10.1007/s12648-022-02500-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02500-2

Keywords

Navigation