Skip to main content
Log in

Valley and spin-dependent shot noise properties in monolayer MoS2-based superlattice

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The spin polarization and the valley and spin-dependent shot noise properties in monolayer MoS2-based superlattice in presence of the extrinsic and intrinsic Rashba spin–orbit interaction (ERSOI and IRSOI) are theoretically investigated using the transfer-matrix approach. It is shown that spin-polarization can be adjusted via the electrostatic barrier height, the number of superlattice barriers, and the ERSOI strength. The spin and valley-dependent Fano factor through the monolayer MoS2 superlattice was calculated and analyzed. It was found that the Fano factor depends on the valley and spin degrees of freedom, the electrostatic barrier height, the number of MoS2 superlattice barriers (N), and ERSOI strength. The Fano factor has a Poissonian value for some values of the barrier height. Moreover, it was found that the Fano factor has a gap with respect to the ERSOI strength. Also, when \(N \ge 5\), the Fano factor approaches 1 for one of the valleys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K S Novoselov et al. Science 306 666 (2004)

    Article  ADS  Google Scholar 

  2. A H C Neto, F Guinea and N M R Peres Mod. Phys. 81 109 (2009)

    Article  ADS  Google Scholar 

  3. A M van der Zande et al. Nature Mater. 12 554 (2013)

    Article  ADS  Google Scholar 

  4. Y C Lin et al. Nanoscale 4 6637 (2012)

    Article  ADS  Google Scholar 

  5. K K H Smithe, C D English, S V Suryavanshi and E Pop 2D Mater. 4 011009 (2017)

    Article  Google Scholar 

  6. K K Smithe, S V Suryavanshi, M Munoz Rojo, A D Tedjarati and E Pop ACS Nano 11 8456 (2017)

    Article  Google Scholar 

  7. M Sharma, A Singh and R Singh ACS Applied Nano Materials 3 4445 (2020)

    Article  Google Scholar 

  8. K F Mak, C Lee, J Hone, J Shan and T F Heinz Phys. Rev. Lett. 105 136805 (2010)

    Article  ADS  Google Scholar 

  9. Q H Wang, K Kalantar-Zadeh, A Kis, J N Coleman and M S Strano Nature nanotechnology 7 699 (2012)

    Article  ADS  Google Scholar 

  10. H Ochoa and R Roldán Phys. Rev. B 87 245421 (2013)

    Article  ADS  Google Scholar 

  11. H Zeng, J Dai, W Yao, D Xiao and X Cui Nature nanotechnology 7 490 (2012)

    Article  ADS  Google Scholar 

  12. D Xiao, G B Liu, W Feng, X Xu and W Yao Phys. Rev. Lett. 108 196802 (2012)

    Article  ADS  Google Scholar 

  13. Q Shao et al. Nano Lett. 16 7514 (2016)

    Article  ADS  Google Scholar 

  14. Y M Xiao, W Xu, B Van Duppen and F M Peeters Phys. Rev. B 94 155432 (2016)

    Article  ADS  Google Scholar 

  15. R Tsu and L Esaki Appl. Phys. Lett. 22 562 (1973).

    Article  ADS  Google Scholar 

  16. Z P Niu, Y M Zhang and S Dong New J. Phys. 17 073026 (2015)

    Article  ADS  Google Scholar 

  17. L Babazadeh Habashi, F Kanjouri and S M Elahi Indian Journal of Physics 88 837 (2014)

    Article  ADS  Google Scholar 

  18. Q Zhang Rep. 6 33701 (2016)

    Google Scholar 

  19. B Sarebanha, S Ahmadi and L Eslami Physica E 89 139 (2017)

    Article  ADS  Google Scholar 

  20. F Sattari and S Mirershadi Eur. Phys. J. B 91 40275 (2018)

    Article  Google Scholar 

  21. F Sattari Superlattice. Microst. 119 218 (2018)

    Article  ADS  Google Scholar 

  22. F Tavakoli and E Faizabadi Phys. J. B 92 226 (2019)

    ADS  Google Scholar 

  23. M de Dios-Leyva, M A Hernández-Bertrán, V Akimov and J A Vinasco Phys. J. B 93 47 (2019)

    ADS  Google Scholar 

  24. A Boroughani and E Faizabadi Ann. Phys. (Berlin) 531 1900202 (2019)

    Article  ADS  Google Scholar 

  25. Q Tong, M Chen and W Yao Phys. Rev. Appl. 12 024031 (2019)

    Article  ADS  Google Scholar 

  26. Y Zhang, Y Kim, M J Gilbert and N Mason Appl. Phys. Lett. 115 143508 (2019)

    Article  ADS  Google Scholar 

  27. M D Asham and A H Phillips Physica E 113 97 (2019)

    Article  ADS  Google Scholar 

  28. R Huber et al. Nano Lett. 20 8046 (2020)

    Article  ADS  Google Scholar 

  29. P Chantngarm and B Soodchomshom J. Magn. Magn. Mater. 473 291 (2019)

    Article  ADS  Google Scholar 

  30. F Sattari and S Mirershadi J. Magn. Magn. Mater. 514 167256 (2020)

    Article  Google Scholar 

  31. H Chen, P Yan, J Li, C He, T Ouyang, C Zhang, C Tang and J Zhong J. Appl. Phys. 127 084301 (2020)

    Article  ADS  Google Scholar 

  32. H-Y Mu, Y-T Yao, J-R Li, G-C Liu, C He, Y-J Sun, G Yang and X-T An J. Phys. Chem. Lett. 11 3882 (2020)

    Article  Google Scholar 

  33. H Dehnavi, A A Masoudi, M Saadat, H Ghadiri and A Saffarzadeh J. Phys.: Condens. Matter 32 415002 (2020)

    Google Scholar 

  34. J J Wang, S Liu and J Wang Phys. Rev. B 101 245428 (2020)

    Article  ADS  Google Scholar 

  35. F Sattari Physica B 597 412354 (2020)

    Article  Google Scholar 

  36. Q-P Wu, L-L Chang, Y-Z Li, X-B Xiao and Z-F Liu Physica E 118 113864 (2020)

    Article  Google Scholar 

  37. Y Hajati, Z Amini and M Sabaeian J. Magn. Magn. Mater. 503 166580 (2020)

    Article  Google Scholar 

  38. F Tavakoli and E Faizabadi J. Comput. Electron 20 126 (2021)

    Article  Google Scholar 

  39. L-L Chang, Q-P Wu, R-L Zhang, Y-Z Li, M-R Liu, X-B Xiao and Z-F Liu Physica B 601 412552 (2021)

    Article  Google Scholar 

  40. M Solaimani and M Izadifard Indian Journal of Physics 95 1141 (2021)

    Article  ADS  Google Scholar 

  41. Y Blanter and M Buttiker Phys. Rep. 336 1 (2000)

    Article  ADS  Google Scholar 

  42. R Danneau, F Wu, M Y Tomi and J B Oostinga Rev. B 82 161405(R) (2010)

    Article  Google Scholar 

  43. J Tworzydlo, B Trauzettel, M Titov, A Rycerz and C W J Beenakker Phys. Rev. Lett. 96 246802 (2006)

    Article  ADS  Google Scholar 

  44. X X Guo, D Liu and Y X Li Appl. Phys. Lett. 98 242101 (2011)

    Article  ADS  Google Scholar 

  45. P-L Zhao and X Chen Appl. Phys. Lett. 99 182108 (2011)

    Article  ADS  Google Scholar 

  46. H Y Chen Physica B 440 10 (2014)

    Article  ADS  Google Scholar 

  47. N Kumada, F D Parmentier and H Hibino Commun. 6 8068 (2015)

    Google Scholar 

  48. Z Zhang, X Su, Y Fan, P Yin, L Zhang and X Shi Physica B 473 7 (2015)

    Article  ADS  Google Scholar 

  49. F D Parmentier, L N Serkovic-Loli, P Roulleau and D C Glattli Phys. Rev. Lett. 116 227401 (2016)

    Article  ADS  Google Scholar 

  50. A Laitinen, G S Paraoanu, M Oksanen, M F Craciun and S Russo Phys. Rev. B 93 115413 (2016)

    Article  ADS  Google Scholar 

  51. Z Lorestaniweiss and Z Rashidian Superlattices Microstruct 106 197 (2017)

    Article  ADS  Google Scholar 

  52. F Sattari and S Mirershadi Superlattices Microstruct 111 438 (2017)

    Article  ADS  Google Scholar 

  53. Z Rashidian, S Rezaeipour and Y Hajati J. Magn. Magn. Mater. 424 207 (2017)

    Article  ADS  Google Scholar 

  54. H Emamipour J. Magn. Magn. Mater. 4499 133 (2018)

    Article  ADS  Google Scholar 

  55. R Beiranvand and H Hamzehpour J. Magn. Magn. Mater. 474 111 (2019)

    Article  ADS  Google Scholar 

  56. Y-L Huang and H-K Zhao Eur. Phys. J. B 92 256 (2019)

    Article  ADS  Google Scholar 

  57. C Tian, A Huang, L Wu, Y Lou, Y Liu, X Li and Y Wang Nanotechnology 30 015203 (2019)

    Article  ADS  Google Scholar 

  58. M R Sahu, A K Paul, A Soori, K Watanabe and T Taniguchi Phys. Rev. B 100 235414 (2019)

    Article  ADS  Google Scholar 

  59. A K Paul, M R Sahu, C Kumar and K Watanabe Phys. 3 171 (2020)

    Google Scholar 

  60. C-S Huang, J-Y Song and Y C Tao Phys. Lett. A 384 126502 (2020)

    Article  MathSciNet  Google Scholar 

  61. H Rostami, A G Moghaddam and R Asgari Phys. Rev. B 88 085440 (2013)

    Article  ADS  Google Scholar 

  62. C Bai and X Zhang Phys. Rev. B 76 075430 (2007)

    Article  ADS  Google Scholar 

  63. N Abedpour, A Esmailpour, R Asgari and M R R Tabar Phys. Rev. B 79 165412 (2009)

    Article  ADS  Google Scholar 

  64. R Biswas and C Sinha Sci. Rep. 11 2881 (2021)

    Article  ADS  Google Scholar 

  65. R Liu, G Hu, M Dan, Y Zhang, L Li and Y Zhang Nano Energy 72 104678 (2020)

    Article  Google Scholar 

  66. J Tworzydło, B Trauzettel, M Titov, A Rycerz and C W J Beenakker Phys. Rev. Lett. 96 246802 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Farhad Sattari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattari, F., Mirershadi, S. Valley and spin-dependent shot noise properties in monolayer MoS2-based superlattice. Indian J Phys 96, 3501–3507 (2022). https://doi.org/10.1007/s12648-021-02258-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02258-z

Keywords

Navigation