Skip to main content
Log in

Analysis of oblique wave diffraction by rectangular thick barrier in the presence of surface tension

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper presents the solution for the problem of oblique wave diffraction by the thick barriers in the presence of surface tension. Two different barrier configurations are considered namely, (i) bottom standing thick rectangular barrier, (ii) thick rectangular block. Reflection and transmission coefficients are evaluated by applying an appropriate multi-term Galerkin approximation technique. The basis functions are chosen in terms of the Gegenbauer polynomial of order 1/6 with suitable weights. For each configuration, reflection and transmission coefficients are represented graphically against wave numbers in many figures by varying surface tension. The numerical solutions are compared with known results without the effect of surface tension. Thus, good agreement of the results implies the correctness of the present method. The effect of surface tension at the free surface is investigated by analyzing the reflection and transmission coefficients. It can be observed that surface tension plays a qualitatively relevant role in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. F Ursell Proc. Camb. Phil. Soc. 43 374 (1947)

    Article  ADS  Google Scholar 

  2. H Kreisel Q. Appl. Math. 7 21 (1949)

    Article  Google Scholar 

  3. H Levine and E Rodemich Math. and Stat. Lab. Tech. Rep. 78 (Stanford University) (1958)

  4. W E Williams Proc. Camb. Phil. Soc. 62 507 (1966)

    Article  ADS  Google Scholar 

  5. C C Mei and J L Black J. Fluid Mech. 38 499 (1969)

    Article  ADS  Google Scholar 

  6. D V Evans J. Fluid Mech. 40 433 (1970)

    Article  ADS  Google Scholar 

  7. D Porter Proc. Camb. Phil. Soc. 71 411 (1972)

    Article  ADS  Google Scholar 

  8. S Panda, A Mondal and R Gayen Int. J. Appl. Comput. Math. 3 1037 (2017)

    Article  MathSciNet  Google Scholar 

  9. S Banerjea, U Bhaskar and J Chatterjee Int. J. Appl. Comput. Math. 4 95 (2018)

    Article  Google Scholar 

  10. P Kundu, J Chatterjee, S Banerjea and P Maiti Int. J. Appl. Comput. Math. 6 39 (2020).

    Article  Google Scholar 

  11. D Owen and B S Bhatt Q. J. Mech. Appl. Math. 38 379 (1985)

    Article  Google Scholar 

  12. I V Sturova J. Appl. Mech. Tech. Phys. 32 684 (1991)

    Article  ADS  Google Scholar 

  13. M Kanoria Appl. Ocean Res. 21 69 (1999)

    Article  Google Scholar 

  14. M Kanoria, D P Dolai and B N Mandal J. Eng. Math. 35 361 (1999)

    Article  Google Scholar 

  15. B N Mandal and M Kanoria J. Offshore Mech. Arctic Eng. 122 100 (2000)

    Article  Google Scholar 

  16. M Soylemez and O Goren Appl. Ocean. Res. 25 345 (2003)

    Article  Google Scholar 

  17. O Goren and S M Calisal Can. J. Civ. Eng. 38 546 (2011)

    Article  Google Scholar 

  18. J Hu and P L F Liu Appl. Ocean Res. 79 88 (2018)

    Article  Google Scholar 

  19. S Paul and S De Ocean Eng. 220 108449 (2021)

    Article  Google Scholar 

  20. D V Evans Proc. Camb. Phil. Soc. 64 795 (1968)

    Article  ADS  Google Scholar 

  21. D V Evans Proc. Camb. Phil. Soc. 64 833 (1968)

    Article  ADS  Google Scholar 

  22. P F Rhodes-Robinson Bull. Austral. Math. Soc. 2 317 (1970)

    Article  MathSciNet  Google Scholar 

  23. P F Rhodes-Robinson Proc. Camb. Phil. Soc. 70 323 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  24. P F Rhodes-Robinson Math. Proc. Camb. Phil. Soc. 92 369 (1982)

    Article  MathSciNet  Google Scholar 

  25. B N Mandal and S Banerjea Int. J. Math. & Math. Sci. 15 6 (1992)

    Google Scholar 

  26. R Harter, I D Abrahams and M J Simon Proc. R. Soc. A 463 3131 (2007)

    Article  ADS  Google Scholar 

  27. L M Hocking and D Mahdmina J. Fluid Mech. 224 217 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  28. D V Evans and M Fernyhough J. Fluid Mech. 297 307 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  29. R Porter Ph.D. thesis (School of Mathematics, Univ. of Bristol)(1995)

  30. R Porter and D V Evans J. Fluid Mech. 294 155 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  31. J Xie, H Liu and P Lin J. Eng. Mech. 137 919 (2011)

    Article  Google Scholar 

  32. H Liu, D Fu and X Sun J. Eng. Mech. 139 39 (2013)

    Article  Google Scholar 

  33. G A Kincaid Doctoral dissertation Massachusetts Institute of Technology, Department of Civil Engineering, (1960)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen De.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasmal, A., De, S. Analysis of oblique wave diffraction by rectangular thick barrier in the presence of surface tension. Indian J Phys 96, 2051–2063 (2022). https://doi.org/10.1007/s12648-021-02160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02160-8

Keywords

Navigation