Skip to main content
Log in

Radiative correction to the Casimir energy with mixed boundary condition in 2 + 1 dimensions

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present study, the zero- and first-order radiative correction to the Casimir energy for the massive and massless scalar field confined with mixed (Neumann–Dirichlet) boundary condition between two parallel lines in \(2+1\) dimensions for the self-interacting \(\phi ^4\) theory was computed. The main point in this study is the use of a special program to renormalize the bare parameters of the Lagrangian. The counterterm used in the renormalization program, which was obtained systematically position dependent, is consistent with the boundary condition imposed on the quantum field. To regularize and remove infinities in the calculation process of the Casimir energy, the Box Subtraction Scheme as a regularization technique was used. In this scheme, two similar configurations are usually introduced, and the vacuum energies of these two configurations in proper limits are subtracted from each other. The final answer for the problem is finite and consistent with the expected physical basis. We also compared the new result of this paper to the previously reported results in the zero- and first-order radiative correction to the Casimir energy of scalar field in two spatial dimensions with periodic, Dirichlet, and Neumann boundary conditions. Finally, all aspects of this comparison were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The relation for this adjustment can now be written as:

    $$\begin{aligned} \frac{\ln \Lambda _{1(A1)}}{\ln \Lambda _{1(B1)}}=\frac{\ln (\omega _nb)-\ln (\omega _{n^{\prime }}b)-\ln \Lambda _{1(B1)}}{\ln (\omega _na)-\ln (\omega _{n^{\prime }}a)-\ln \Lambda _{1(A1)}},\quad \frac{\ln \Lambda _{1(A2)}}{\ln \Lambda _{1(B2)}}=\frac{\ln (\omega _n(L-b))-\ln (\omega _{n^{\prime }}(L-b))-\ln \Lambda _{1(B2)}}{\ln (\omega _n(L-a)) -\ln (\omega _{n^{\prime }}(L-a))-\ln \Lambda _{1(A2)}}. \end{aligned}$$
  2. The relation for this adjustment can now be written as:

    $$\begin{aligned} \frac{\Lambda _{A1}}{\Lambda _{B1}}=\frac{a}{b}\bigg [\frac{3(\ln (\pi \Lambda _{B1})-1)^2+(\ln (\pi \Lambda _{B1})-1)\ln 4+1}{3(\ln (\pi \Lambda _{A1})-1)^2+(\ln (\pi \Lambda _{A1})-1)\ln 4+1}\bigg ], \frac{\Lambda _{A2}}{\Lambda _{B2}}=\frac{L-a}{L-b}\bigg [\frac{3(\ln (\pi \Lambda _{B2})-1)^2+(\ln (\pi \Lambda _{B2})-1)\ln 4+1}{3(\ln (\pi \Lambda _{A2})-1)^2+(\ln (\pi \Lambda _{A2})-1)\ln 4+1}\bigg ]. \end{aligned}$$

References

  1. M Bordag, D Robaschik and E Wieczorek Ann. Phys. (N.Y.) 165 192 (1985)

  2. M Bordag and J Lindig Phys. Rev. D58 045003 (1998)

    Article  Google Scholar 

  3. M Bordag and K Scharnhorst Phys. Rev. Lett. 81 3815 (1998)

    Article  ADS  Google Scholar 

  4. A Farrokhabadi, J Mokhtari and A Koochi Indian J. Phys. 89 599 (2015)

    Google Scholar 

  5. M A Valuyan Mod. Phys. Lett. A32 1750128 (2017)

  6. M A Valuyan Can. J. Phys. 96 1004 (2018)

  7. R Moazzemi, A Mohammadi and S S Gousheh Eur. Phys. J. C56 585 (2008)

    ADS  Google Scholar 

  8. L C de Albuquerque Phys. Rev. D55 7754 (1997)

  9. M Bordag, U Mohideen and V M Mostepanenko Phys. Rep. 353 1 (2001)

    Article  MathSciNet  Google Scholar 

  10. C D Fosco and N F Svaiter J. Math. Phys. 42 5185 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. N Graham, R L Jaffe, V Khemani, M Quandt, O Schroeder and H Weigel Nucl. Phys. B677 379 (2004)

    Google Scholar 

  12. R Moazzemi, M Namdar and S S Gousheh JHEP 9 029 (2007)

    Article  ADS  Google Scholar 

  13. R Moazzemi and S S Gousheh Phys. Lett. B658 255 (2008)

    Article  ADS  Google Scholar 

  14. F A Baron, R M Cavalcanti and C Farina Nucl. Phys. B (Proc. Suppl.) 127 118 (2004)

  15. F A Baron, R M Cavalcanti and C Farina arXiv: hep-th/0312169 (2003)

  16. S S Gousheh, R Moazzemi and M A Valuyan Phys. Lett. B681 477 (2009)

    Article  ADS  Google Scholar 

  17. M A Valuyan Int. J. Geo. Meth. Mod. Phys. 15 1850172 (2018)

  18. M A Valuyan J. Phys. G: Nucl. Part. Phys. 45 095006 (2018)

  19. M A Valuyan Eur. Phys. J Plus 133 401 (2018)

  20. M R Tanhayi and S Mirabi J. Theor. Appl. Phys. 6 24 (2012)

    Article  ADS  Google Scholar 

  21. K A Milton The Casimir Effect: Physical Manifestations of Zero-Point Energy (World Scientific Publishing Co.) (2001)

  22. M R Setare and A Seyedzahedi Indian J. Phys. 90 583 (2016)

    Google Scholar 

  23. A Romeo and K A Milton Phys. Lett. B621 309 (2005)

    Article  ADS  Google Scholar 

  24. K A Milton, A V Nesterenko and V V Nesterenko Phys. Rev. D59 105009 (1999)

    Article  Google Scholar 

  25. I H Brevik, V V Nesterenko and I G Pirozhenko J. Phys. A31 8661 (1998)

    Article  ADS  Google Scholar 

  26. K A Milton, L L Deraad and J. Schwinger Ann. Phys. (N.Y.) 115 388 (1978)

  27. J Baacke and Y Igarashi Phys. Rev. D27 460 (1983)

    Article  Google Scholar 

  28. M A Braun Theo. Math. Phys. 190 237 (2017)

  29. T H Boyer Phys. Rev. 174 1764 (1968)

  30. M A Valuyan and S S Gousheh Int. J. Mod. Phys. A25 1165 (2010)

    Article  ADS  Google Scholar 

  31. R Saghian, M A Valuyan, A Seyedzahedi and S S Gousheh Int. J. Mod. Phys. A27 1250038 (2012)

    Article  ADS  Google Scholar 

  32. M E Peskin and D V Schroeder An Introduction to Quantum Field Theory (Addison Wesley) (1995)

  33. A A Saharian, IC/2007/082, arXiv: hep-th/0002239v1 (2000)

  34. J Ambjørn and S Wolfram Ann. Phys. (NY) 147 1 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the research office of Semnan Branch, Islamic Azad University, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Valuyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valuyan, M.A. Radiative correction to the Casimir energy with mixed boundary condition in 2 + 1 dimensions. Indian J Phys 95, 981–988 (2021). https://doi.org/10.1007/s12648-020-01758-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01758-8

Keywords

PACS Nos.

Navigation