Skip to main content
Log in

Numerical study of self-similar natural convection mass transfer from a rotating cone in anisotropic porous media with Stefan blowing and Navier slip

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A mathematical model is presented for laminar, steady natural convection mass transfer in boundary layer flow from a rotating porous vertical cone in anisotropic high-permeability porous media. The transformed boundary value problem is solved subject to prescribed surface and free stream boundary conditions with a Maple 17 shooting method. Validation with a Chebyshev spectral collocation method is included. The influence of tangential Darcy number, swirl Darcy number, Schmidt number, rotational parameter, momentum (velocity slip), mass slip and wall mass flux (transpiration) on the velocity and concentration distributions is evaluated in detail. The computations show that tangential and swirl velocities are enhanced generally with increasing permeability functions (i.e., Darcy parameters). Increasing spin velocity of the cone accelerates the tangential flow, whereas it retards the swirl flow. An elevation in wall suction depresses both tangential and swirl flow. However, increasing injection generates acceleration in the tangential and swirl flow. With greater momentum (hydrodynamic) slip, both tangential and swirl flows are accelerated. Concentration values and Sherwood number function values are also enhanced with momentum slip, although this is only achieved for the case of wall injection. A substantial suppression in tangential velocity is induced with higher mass (solutal) slip effect for any value of injection parameter. Concentration is also depressed at the wall (cone surface) with an increase in mass slip parameter, irrespective of whether injection or suction is present. The model is relevant to spin coating operations in filtration media (in which swirling boundary layers can be controlled with porous media to deposit thin films on industrial components), flow control of mixing devices in distillation processes and also chromatographical analysis systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. L Bennamoun and A Belhamri Fluid Dyn. Mater. Process.4 221 (2008)

    Google Scholar 

  2. A S Altevogt, D E Rolston and S Whitaker Adv. Water Resour.26 717 (2003)

    ADS  Google Scholar 

  3. O Anwar Beg and O D Makinde, Petroleum Sci. Eng.76 93 (2011)

  4. C Nicholson Rep. Prog. Phys.64(7) 815 (2001)

    ADS  Google Scholar 

  5. M A G Ulson de Souza and S Whitaker, Braz. J. Chem. Eng.20(2) 191 (2003)

    Google Scholar 

  6. K G Helmer, J D Bernard and H S Christopher NMR Biomed.8 297 (1995)

    Google Scholar 

  7. R M Cotta, C Baohua and P F L Heilbron Filho Convective Heat and Mass Transfer in Porous Media. NATO ASI Series. (Berlin: Springer) Volume 525 (1991)

    Google Scholar 

  8. J Piquemal, F A Kulacki and F Arinç Transp. Porous Media10 271 (1993)

    Google Scholar 

  9. K Vafai and C L Tien Int. J. Heat Mass Transf.25 1183 (1982)

    Google Scholar 

  10. H Marcus J. Geophys. Res.67 5215 (1962)

    ADS  Google Scholar 

  11. X Wang, F Thauvin and K K Mohanty Chem. Eng. Sci.54 1859 (1999)

    Google Scholar 

  12. K L Adams, W B Russel and E Rebenfeld Int. J. Multiph. Flow.14 203 (1988)

    Google Scholar 

  13. G Mishra and A Reddy ASCE J. Hydraul. Eng.109(6) 897 (1983)

    Google Scholar 

  14. G Chiogna, O A Cirpka, M Rolle and A Bellin J. Chem. Phys.51 261 (2015)

    Google Scholar 

  15. A Nakayama and F Kuwahara, Hand Book of Porous Media, Editor (K. Vafai), CRC Press, 235 (2005)

  16. F Salzberg and S P Kezios ASME J. Heat Transf.87(4) 469 (1965)

    Google Scholar 

  17. J Newman J. Electrochem. Soc.119 69 (1972)

    Google Scholar 

  18. K A Smith and C K Colton AIChemE J.18 949 (1972)

    Google Scholar 

  19. B T Ellison and I Cornet, J. Electrochem. Soc.118(68) (1971)

    Google Scholar 

  20. C M Mohr and J Newman J. Electrochem. Soc.123 1687 (1976)

    Google Scholar 

  21. M Toren, M Ungarish, G Pinchuk and A Solan ASME J. Appl. Mech.58(2) 566 (1991)

    ADS  Google Scholar 

  22. A A Rashaida, D J Bergstrom and R J Sumner ASME J. Appl. Mech.73(1) 108 (2005)

    Google Scholar 

  23. Y Taamneh and R Omari J. Fluids2013 60483 (2013)

    Google Scholar 

  24. A F Miguel Thermal Sci.16(1) 167 (2012)

    Google Scholar 

  25. W A Khan, M J Uddin and A I M Ismail PloS One8(3) e54024 (2013)

    ADS  Google Scholar 

  26. O Anwar Bég, M J Uddin, M M Rashidi and N Kavyani, J. Eng. Thermophysics.23(2) 79 (2014)

  27. C Y Wang Chem. Eng. Sci.57 3745 (2002)

    Google Scholar 

  28. V R Prasad, A Subba Rao, N B Reddy, B Vasu and O Anwar Beg Proc. IMechE-PART E J. Proc. Mech. Eng.227(4) 309 (2013)

    Google Scholar 

  29. K Bhattacharya Front. Heat Mass Transf.3 043006 (2012)

    Google Scholar 

  30. T Fang and W Jing Commun. Nonlinear Sci. Numer. Simul.19 3086 (2014)

    ADS  MathSciNet  Google Scholar 

  31. M C Ece Appl. Math. Comput.179 231 (2006)

    MathSciNet  Google Scholar 

  32. MAPLE from Waterloo Maple Software Inc., Canada (www.maplesoft.com) (2015)

  33. M J Uddin, O Anwar Beg and N S Amin J. Magn. Magn. Mat.368 252 (2014)

    ADS  Google Scholar 

  34. O Anwar Beg, M Ferdows, S Islam and M N Islam J. Mech. Med. Biol.14 1450039-1 (2014)

  35. M J Uddin, N H M Yusoff, O Anwar Beg and A I M Ismail Phys. Scr.87 1 (2013)

    Google Scholar 

  36. M J Uddin, W A Khan and A I M Ismail Transp. Porous Media92 867 (2012)

    MathSciNet  Google Scholar 

  37. J P Boyd Chebyshev & Fourier Spectral Methods, 2nd edn. (Dover, New York) (2001)

    MATH  Google Scholar 

  38. G J Li, J Ma and B W Li ASME J. Heat Transf. 137(3) 032701 (2015). https://doi.org/10.1115/1.4029237

    Article  Google Scholar 

  39. A F Elsayed and O Anwar Beg J. Mech. Med. Biol.14(3) 1450043-1 (2014)

  40. O Anwar Beg, M Hameed and T A Beg Int. J. Comput. Meth. Eng. Sci. Mech.14 104 (2013)

  41. M M Hoque, M M Alam, M Ferdows and O Anwar Beg Proc. IMechE-Part H J. Eng. Med.227(11) 1155 (2013)

    Google Scholar 

  42. O Anwar Beg Numerical methods for multi-physical magnetohydrodynamics, New Developments in Hydrodynamics Research, Chapter 1 (New York: Nova Science) (2012)

  43. Z Hussain PhD Thesis (Applied Mathematics, University of Birmingham, UK) (2010)

  44. B Gebhert Heat Conduction and Mass Diffusion (New York: MacGraw Hill) (1993)

    Google Scholar 

  45. L Storelsetten and D A S Rees, Transp. Porous Media19 79 (1995)

    Google Scholar 

  46. B Gebhart, Y Jaluria, R L Mahajan and B Sammakia Buoyancy-Induced Flows and Transport (Washington: Hemisphere) (1988)

    MATH  Google Scholar 

  47. D Tripathi and O Anwar Beg, Comput. Methods Biomech. Biomed. Eng.18(15) 1648 (2015)

  48. Z Mehmood, R Mehmood and Z Iqbal Commun. Theor. Phys. 67(4) 443 (2017)

    ADS  MathSciNet  Google Scholar 

  49. R Mehmood, S Nadeem, S Saleem and N S Akbar J. Taiwan Inst. Chem. Eng.74 49 (2017)

    Google Scholar 

  50. R Tabasum, R Mehmood and O Pourmehran Part E J. Proc. Mech. Eng.232(5) 622 (2018)

    Google Scholar 

  51. G Makanda, O D Makinde and P Sibanda Math. Prob. Eng.2013 934712 (2013)

    Google Scholar 

  52. O D Makinde, N Sandeep, I L Animasaun and M S Tshehla Defect and Diffus. Forum. 374 67 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MD. Shamshuddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bég, O.A., Uddin, M.J., Bég, T.A. et al. Numerical study of self-similar natural convection mass transfer from a rotating cone in anisotropic porous media with Stefan blowing and Navier slip. Indian J Phys 94, 863–877 (2020). https://doi.org/10.1007/s12648-019-01520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01520-9

Keywords

PACS Nos

Navigation