Skip to main content

Advertisement

Log in

Impact of gamma irradiation on porosity and pore distribution of poly [ethylene-oxide] films: correlation with dielectric and microstructural properties

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structure and morphology of polymers are significantly altered upon exposure to high energy gamma irradiation either through bond breakage i.e. scission or cross-linkage. The present article reports the influence of gamma radiation (1–20 kGy) on the distribution of molecular weight and porosity of the films prepared using irradiated and unirradiated poly-[ethylene oxide] (PEO) powder. The PEO films exhibit pore dimension in the range of 20–500 nm. Selective irradiation is capable of tailoring the pore-size and reducing the multimodal trait to uni-or bimodal upon high energy perturbation. The porosity of PEO films is determined from both 2D-pore surface calculation from SEM images and compared with 3D-BET porosity. Correlation is established among dielectric constant (ε′) and porosity. The magnitude of ε′ increases sharply towards low frequency due to electrode polarization effects. Relaxation time is found to be highest and comparable for 1 and 10 KGy. With increase in irradiation dose, scission is predominant, owing to which smaller polymer fragments are produced which are able to follow fast frequency regime and thereby relax at lesser time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L Li, F Yan and Gi Xue J. Appl. Polym. Sci. 91 303 (2004)

    Article  Google Scholar 

  2. G Liu and J Ding Adv. Mater. 10 69 (1998)

    Article  ADS  Google Scholar 

  3. M Yoshida, M Asano, A Safranj, H Omichi, R Spohr, J Vetter and R Katakai Macromolecules 29 8987 (1996)

    Article  ADS  Google Scholar 

  4. R A Zoppi, S Contant, E A R Duek, F R Marques, M L F Wada and S P Nunes Polymer 40 3275 (1999)

    Article  Google Scholar 

  5. H P Kormann, G Schmid, K Pelzer, K Philippot and B Chaudret Z. Anorg. Allg. Chem. 630 1913 (2004)

    Article  Google Scholar 

  6. S Pan and L J Rothberg Nano Lett. 3 811(2003)

    Article  ADS  Google Scholar 

  7. K Fukutani, K Tanji, T Motoi and T Den Adv. Mater. 16 1456 (2004)

    Article  Google Scholar 

  8. N Aoi Jpn. J. Appl. Phys. 36 1355(1997)

    Article  ADS  Google Scholar 

  9. Z Y Yang and M Zhao J. Opt. A-Pure Appl. Op. 9 872 (2007)

    Article  ADS  Google Scholar 

  10. M R Baklanova, K P Mogilnikov, V G Polovinkin and F N Dultsev J. Vac. Sci. Technol., B. 18 1385 (2000)

    Article  Google Scholar 

  11. K P Mogilnikov, V G Polovinkin, F N Dultsev and M R Baklanov, MRS Proc. p 565 (1999)

  12. S Dourdain, J F Bardeau, M Colas, B Smarsly, A Mehdi, B M Ocko et al. Appl. Phys. Lett. 86 113108-1 (2005)

    Article  ADS  Google Scholar 

  13. J H Yim, Y Y Lyu, H D Jeong, S A Song, I S Hwang, J H Lee et al. Adv. Funct. Mater. 13 382 (2003)

    Article  Google Scholar 

  14. S J Gregg and W Sing Adsorption, Surface Area and Porosity, 2nd edn. (New York: Academic) (1982)

    Google Scholar 

  15. Zainuddin, J Albinska, P Ulanski and J M Rosiak J. Radioanal. Nucl. Chem. 253 339 (2002)

    Article  Google Scholar 

  16. J Puišoa, D Adlienė, A Guobiene, I Prosycevas and R Plaipaite-Nalivaiko Mat. Sci. Eng. B-Solid. 176 1562 (2011)

    Article  Google Scholar 

  17. A A Abiona and A G Osinkolu Int. J. Phys. Sci. 5 960 (2010)

    Google Scholar 

  18. E M Kempner J. Polym. Sci., Part B: Polym. Phys. 49 827 (2011)

    Article  ADS  Google Scholar 

  19. A Charlesby Atomic Radiation and Polymers (Oxford, UK: Pergamon Press) (1960)

    Google Scholar 

  20. M Dole (ed.) The Radiation Chemistry of Macromolecules (New York: Academic Press) (1972)

    Google Scholar 

  21. S Ghosal, R Ray, T K Ballav and S Tarafdar Indian J. Pure Appl. Math. 51 324(2013)

    Google Scholar 

  22. S Ghosal, M Mukhopadhyay, R Ray and S Tarafdar Physica A 400 139 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. K Schrote and M W Frey Polymer 54 737 (2013)

    Article  Google Scholar 

  24. B Croonenborghs, M A Smith and P Strain Radiat. Phys. Chem. 76 1676 (2007)

    Article  ADS  Google Scholar 

  25. P Nanda, S K De, S Manna, U De and S Tarafdar Nucl. Instrum. Methods Phys. Res., Sect. B. 268 73 (2010)

    Article  ADS  Google Scholar 

  26. J J H Lancastre, A N Falcão, F M A Margaça, L M. Ferreira, I M Miranda Salvado et al. Radiat. Phys. Chem. 106 126 (2015)

    Article  ADS  Google Scholar 

  27. M Saha, M Mukhopadhyay, R Ray, T K Ballabh and S Tarafdar Modell. Simul. Mater. Sci. Eng. 23 025003 (2015)

    Article  ADS  Google Scholar 

  28. P S Clair Macromolecules 42 3469 (2009)

    Article  ADS  Google Scholar 

  29. S R Majid and A K Arof Physica B 390 209 (2007)

    Article  ADS  Google Scholar 

  30. S Choudhary and R J Sengwa Ionics 17 811 (2011)

    Article  Google Scholar 

  31. K Pradhan, R N P Choudhary and B K Samantaray Int. J. Electrochem.Sci. 3 597 (2008)

    Google Scholar 

  32. J A Campbell, A A Goodwin and G P Simon J. Polym. 42 4731 (2001)

    Article  Google Scholar 

  33. R Mishra, N Baskaran, P A Ramakrishna and K J Rao Solid State Ion. 112 261 (1998)

    Article  Google Scholar 

  34. G Gondivaraj, N Baskaran, K Shahi and P Monoravi Solid State Ion. 76 47 (1995)

    Google Scholar 

  35. L Y Xie, X Y Huang, C Wu and P K Jiang J. Mater. Chem. 21 5897 (2011)

    Article  Google Scholar 

  36. A Chen, Y Zhi, L E Cross, R Guo and S A Bhalla Appl. Phys. Lett. 79 818 (2001)

    Article  ADS  Google Scholar 

  37. C T Moynihan, L P Boesch and N L Laberge Phys. Chem. Glasses. 14 122 (1973)

    Google Scholar 

  38. R Baskaran, S Selvasekaranpandian, N Kuwata, J Kawamura and T Hattoriac Mater. Chem. Phys. 98 55 (2006)

    Article  Google Scholar 

  39. S M Ashwini and V S Sangawar Chem. Sci. Trans. 2 322 (2013)

    Google Scholar 

  40. I Fisher, W D Kaplan and M Eizenberg J. Appl. Phys. 95 5762 (2004)

    Article  ADS  Google Scholar 

  41. J J Si, H Ono, K Uchida, S Nozaki, H Morisaki and N Itoh Appl. Phys. Lett. 79 3140 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research work is funded by UGC Major Research Project [F. No. 41-847/2012 (SR)] for financial support. Dr. Paramita Bhattacharyya and Miss. Suchisrawa Ghosh of Department of Food Technology, Jadavpur University, Kolkata are acknowledged in extending their support in using the gamma irradiation chamber. Dr. Raja Shunmugam and Mr. Vijay Rao of Indian Institute for Science Education & Research (IISER), Kalyani, India are also acknowledged for their help regarding molecular distribution study by GPC technique. Prof. Sujata Tarafdar, CMPRC, Jadavpur University is acknowledged for valuable suggestions and inputs. The Authors also acknowledge FIST-2, DST Government of India, at the Physics Department, Jadavpur University for providing the facility of SEM microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumita Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, M., Mukhopadhyay, M. & Ray, R. Impact of gamma irradiation on porosity and pore distribution of poly [ethylene-oxide] films: correlation with dielectric and microstructural properties. Indian J Phys 92, 325–336 (2018). https://doi.org/10.1007/s12648-017-1110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1110-3

Keywords

PACS No.

Navigation