Skip to main content
Log in

Magneto-thermodynamic properties of gapped graphene-like structures

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

By applying the Green’s function technique and using the tight-binding Hamiltonian model, thermodynamic properties of gapped graphene-like structures, including silicon carbide (SiC), boron nitride (BN) and beryllium monooxide (BeO) in the presence of a transverse magnetic field are investigated. In fact, we have studied electronic density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) in order to investigate the dynamics of Dirac fermions. At an applied certain value of magnetic field, the band gap width increases for SiC, BN and BeO structures with respect to the gapless graphene and a double peak appears in DOS with increasing of quantum states. On the other hand, the band gap size decreases with magnetic field. We have found that EHC and MS increase slightly at low temperatures with gap and magnetic field. Also, EHC and MS reach to their maximum value at a critical temperature point while an increase behavior has been observed for high temperatures significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K S Novoselov et al. Science 306 666 (2004)

    Article  ADS  Google Scholar 

  2. K S Novoselov et al. Nature 438 197 (2005)

    Article  ADS  Google Scholar 

  3. K S Novoselov et al. Proc. Natl. Acad. Sci. 102 10451 (2005)

    Article  ADS  Google Scholar 

  4. A K Geim Science 324 1530 (2009)

    Article  ADS  Google Scholar 

  5. F Bonaccorso, Z Sun, T Hasan and A C Ferrari Nat. Photon 4 611 (2010)

    Article  ADS  Google Scholar 

  6. G W Semenoff Phys. Rev. Lett. 53 2449 (1984)

    Article  ADS  Google Scholar 

  7. M I Katsnelson, K S Novoselov and A K Geim Nat. Phys. 2 620 (2006)

    Article  Google Scholar 

  8. Y Lin, K A Jenkins, A Valdes-Garcia, J P Small, D B Farmer and P Avouris Nano Lett. 9 422 (2009)

    Article  ADS  Google Scholar 

  9. J Kedzierski et al. IEEE Trans. Electron. Devices 55 2078 (2008)

    Article  ADS  Google Scholar 

  10. H Min, G Borghi, M Polini and A H MacDonald Phys. Rev. B 77 041407(R) (2008)

    Article  ADS  Google Scholar 

  11. Y Araki Phys. Rev. B 84 113402 (2011)

    Article  ADS  Google Scholar 

  12. G W Semenoff Phys. Scripta 2012 014016 (2012)

    Article  Google Scholar 

  13. S Y Zhou et al Nat. Mater. 6 770 (2007)

    Article  ADS  Google Scholar 

  14. A Bostwick et al New J. Phys. 9 385 (2007)

    Article  ADS  Google Scholar 

  15. G Giovannetti, P A Khomyakov, G Brocks, P J Kelly, and J van den Brink Phys. Rev. B 76 073103 (2007)

    Article  ADS  Google Scholar 

  16. C R Dean et al Nat. Nanotechnol. 5 722 (2010)

    Article  ADS  Google Scholar 

  17. J Xue et al Nat. Mater. 10 282 (2011)

    Article  ADS  Google Scholar 

  18. M Kindermann, B Uchoa and D L Miller Phys. Rev. B 86 115415 (2012)

    Article  ADS  Google Scholar 

  19. Y Yao, F Ye, X L Qi, S C Zhang and Z Fang Phys. Rev. B 75 041401(R) (2007)

    Article  ADS  Google Scholar 

  20. R W G Wyckoff Crystal Structures (ed.) R W G Wyckoff (New York: Wiely) p 184 (1963)

  21. M Menon, E Richter, A Mavrandonakis, G Froudakis and A N Andriotis Phys. Rev. B 69 315322 (2004)

    Article  Google Scholar 

  22. A H Castro, F Guinea, N M R Peres, K S Novoselov and A K Geim Rev. Mod. Phys. 81 109 (2009)

    Article  ADS  Google Scholar 

  23. V S Kijko, Yu N Makurin and A L Ivanovskii Beryllium Oxide Based Ceramic, Preparation, Physical, Chemical Properties and Applications (ed.) V S Kijko (Ekaterinburg: Ural Division of the RAN) p 119 (2006)

  24. G Vidal-Valet, J P Vidal, K Kurki-Suonic and R Kurki-Suonic Acta Crystallogr. 43 340 (1987)

    Google Scholar 

  25. P B Sorokin, A S Fedorov and L A Chernozatonskii Phys. Solid State 48 398 (2006)

    Article  ADS  Google Scholar 

  26. L Ci et al. Nat. Mater. 9 430 (2010)

    Article  ADS  Google Scholar 

  27. B Radisavljevic, A Radenovic, J Brivio, V Giacometti and A Kis Nat. Nanotechnol. 6 247 (2011)

    Article  Google Scholar 

  28. T K Pauli, P Bhattacharya and DN Bose Appl. Phys. Lett. 56 2648 (1990)

    Article  ADS  Google Scholar 

  29. C H Jin, F Lin, K Suenaga and S Iijima Phys. Rev. Lett. 102 195505 (2009)

    Article  ADS  Google Scholar 

  30. A Lherbier, X Blase, Y Niquet, F Triozon and S Roche Phys. Rev. Lett. 101 036808 (2008)

    Article  ADS  Google Scholar 

  31. M Yarmohammadi, K Mirabbaszadeh and B Shirzadi Int. J. Mod. Phys. B 30 1750045 (2016)

    ADS  Google Scholar 

  32. Y Zhang and S Das Sarma Phys. Rev. Lett. 96 196602 (2006)

    Article  ADS  Google Scholar 

  33. A L Subasi and B Tanatar Phys. Rev. B 78 155304 (2008)

    Article  ADS  Google Scholar 

  34. A L Subasi and B Tanatar Solid State Commun. 144 521 (2007)

    Article  ADS  Google Scholar 

  35. S De Palo, M Botti, S Moroni and G Senantore Phys. Rev. Lett. 94 226405 (2005)

    Article  ADS  Google Scholar 

  36. G D Mahan Many Particle Physics (ed.) M Zagoskin (NewYork: Plenumn Press) p 115 (1993)

  37. E N Economou Green’s Functions in Quantum Physics (ed.) R Merlin (Springer: Heidelberg) p 16 (2006)

  38. G Grosso and G P Parravicini Solid State Physics (ed.) G Grosso (New York: Academic Press) p 188 (2014)

  39. C Kittel Introduction to Solid State Physics (ed.) S Johnson (New York: Wiley) p 105 (2004)

  40. W Nolthing and A Ramakanth Quantum Theory of Magnetism (ed.) W Nolthing (New York: Springer) p 137 (2009)

  41. R K Pathria Statistical Mechanics (ed.) R K Pathria (London:Oxford Press) p 43 (1997)

  42. A Tari The Specific Heat of Matter at Low Temperatures (ed.) A Tari (London: Imperial College Press) p 250 (2003)

  43. K S Yi, D Kim and K-S Park Phys. Rev. B 76 115410 (2007)

    Article  ADS  Google Scholar 

  44. Sh-Y Lin, Y-H Ho, Y-Ch Huang and M-F Lin J. Phys. Soc. Jpn. 81 084602 (2012)

    Article  ADS  Google Scholar 

  45. K Ch Fong et al. Phys. Rev. X 3 041008 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Yarmohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarmohammadi, M., Beig-Mohammadi, M. & Shirzadi, B. Magneto-thermodynamic properties of gapped graphene-like structures. Indian J Phys 91, 659–664 (2017). https://doi.org/10.1007/s12648-017-0962-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-0962-x

Keywords

PACS Nos.

Navigation