Skip to main content
Log in

A comparison of 100 MeV oxygen ion and 60Co gamma irradiation effects on advanced 200 GHz SiGe heterojunction bipolar transistors

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The third-generation (200 GHz) silicon–germanium heterojunction bipolar transistors were irradiated with 100 MeV oxygen [O7+] ions in the dose range from 1 to 100 Mrad. The different electrical characteristics like forward-mode and inverse-mode Gummel characteristics, the normalized base current, excess base current, the current gain, damage constant, neutral base recombination, avalanche multiplication and the output characteristics were measured before and after irradiation. The ion irradiation results were compared with 60Co gamma irradiation results to understand the linear energy transfer effects on the electrical characteristics on silicon–germanium heterojunction bipolar transistors. The stopping range of ions in matter simulation study was conducted to understand the energy loss of 100 MeV O7+ ions in silicon–germanium heterojunction bipolar transistor structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J D Cressler and G Niu Silicon-Germanium Heterojunction Bipolar Transistors (Norwood : Artech House MA) (2003)

  2. J D Cressler Proc. IEEE 93 1559 (2005)

    Article  Google Scholar 

  3. J D Cressler IEEE Trans. Device Mater. Reliab. 10 437 (2010)

    Article  Google Scholar 

  4. Viet Dinh, S M Hong and C Jungemann Solid State Electron 60 58 (2011)

    Google Scholar 

  5. J D Cressler IEEE Trans. Microw. Theory Tech. 46 572 (1998)

    Article  ADS  Google Scholar 

  6. C K Maiti and G A Armstrong Applications of Silicon-Germanium Heterostructure Devices (UK : Taylor) (2001)

  7. A K Sutton et al. IEEE Trans. Nucl. Sci. 52 2358 (2005)

    Article  ADS  Google Scholar 

  8. A P Gnana Prakash et al. IEEE Trans. Nucl. Sci. 53 3175 (2006)

    Article  ADS  Google Scholar 

  9. R M Diestelhorst et al. IEEE Trans. Nucl. Sci. 54 2190 (2007)

    Article  ADS  Google Scholar 

  10. K C Praveen, N Pushpa, Y P Prabakara Rao, G Govindaraj, J D Cressler and A P Gnana Prakash Solid State Electron 54 1554 (2010)

    Article  ADS  Google Scholar 

  11. N Pushpa et al. Nucl. Instrum. Methods Phys. Res. B 273 36 (2012)

    Article  ADS  Google Scholar 

  12. Z Xu et al. IEEE Trans. Nucl. Sci. 57 3206 (2010)

    Google Scholar 

  13. T Zhang, X Wei, G Niu, J D Cressler, P W Marshall and R A IEEE Trans. Nucl. Sci. 56 3071 (2009)

    Article  ADS  Google Scholar 

  14. R A Reed et al. IEEE Trans. Nucl. Sci. 50 2184 (2003)

    Article  ADS  Google Scholar 

  15. J A Pellish et al. IEEE Trans. Nucl. Sci. 54 2322 (2007)

    Article  ADS  Google Scholar 

  16. J A Pellish et al. IEEE Trans. Nucl. Sci. 56 3078 (2009)

    Article  ADS  Google Scholar 

  17. K C Praveen, N Pushpa, A Tripathi, D Revannasiddaiah, J D Cressler and A P Gnana Prakash Radiat. Eff. Defects Solids 166 710 (2011)

    Article  Google Scholar 

  18. K C Praveen, N Pushpa, P S Naik, J D Cressler, A Tripathi and A P Gnana Prakash Nucl. Inst. Method B 273 43 (2012)

    Article  ADS  Google Scholar 

  19. K C Praveen, N Pushpa, J D Cressler and A P Gnana Prakash J. Electron. Phys. 3 348 (2011)

    Google Scholar 

  20. F Gianotti et al. Euro. Phys. J. C 39 293 (2005)

    Article  ADS  Google Scholar 

  21. A A Grillo et al. CERN document No: ATL-UPGRADE-PROC-2009-005 (2009)

  22. A Joseph et al. Proceedings of the 2001 Bipolar/BiCMOS Circuits and Technology Meeting p 143 (2001)

  23. S J Jeng et al. IEEE Trans. Electron Device Lett. 22 542 (2001)

    Article  ADS  Google Scholar 

  24. B Jagannathan et al. IEEE Trans. Electron Device Lett. 23 258 (2002)

    Article  ADS  Google Scholar 

  25. S L Kosier et al. IEEE Trans. Nucl. Sci. 40 1276 (1993)

    Article  ADS  Google Scholar 

  26. J F Ziegler, M D Ziegler and J P Biersack Nucl. Inst. Methods Phys. Res. B 268 1818 (2010)

    Article  ADS  Google Scholar 

  27. J Garth, E Burke and S Woolf IEEE Trans. Nucl. Sci. 32 4382 (1985)

    Article  ADS  Google Scholar 

  28. R N Nowlin, R D Schrimpf, E W Enlow, W E Combs and R L Pease Proceedings of the Bipolar Circuits and Technology Meeting p 174 (1991)

  29. A P Gnana Prakash, S C Ke and K Siddappa Semicond. Sci. Technol. 19 1029 (2004)

    Article  ADS  Google Scholar 

  30. A P Gnana Prakash, S C Ke and K Siddappa Nucl. Inst. Methods Phys. Res. B 215 457 (2004)

    Article  ADS  Google Scholar 

  31. N Pushpa, A P Gnana Prakash, K C Praveen, J D Cressler and D Revannasiddaiah Radiat. Eff. Defects Solids 164 592 (2009)

    Article  ADS  Google Scholar 

  32. N Pushpa, K C Praveen, A P Gnana Prakash, Y P Prabhakara Rao, A Tripati and D Revannasiddaiah Nucl. Inst. Methods Phys. Res. A 620 450 (2010)

    Article  ADS  Google Scholar 

  33. K V Madhu, S R Kulkarni, M Ravindra and R Damle Semicond. Sci. Technol. 22 963 (2007)

    Article  ADS  Google Scholar 

  34. N S Saks, M Simons, D M Fleetwood, J T Yount, P M Lenahan and RB Klein IEEE Trans. Nucl. Sci. 41 1854 (1994)

    Article  ADS  Google Scholar 

  35. G C Messenger and J P Spratt Proc. IRE 461038 (1958)

    Google Scholar 

  36. G Niu, J D Cressler and A J Joseph IEEE Trans. Electron Devices 45 2499 (1998)

    Article  ADS  Google Scholar 

  37. A J Joseph, J D Cressler, D M Richey, R C Jaeger and D L Harame IEEE Trans. Electron Devices 44 404 (1997)

    Article  ADS  Google Scholar 

  38. J Hamel IEEE Trans. Electron Devices 44 901 (1997)

    Article  ADS  Google Scholar 

  39. G F Niu, J D Cressler, S M Zhang, U Gogineni and D C Ahlgren IEEE Trans. Electron Devices 46 1007 (1999)

    Article  ADS  Google Scholar 

  40. A Shatalov, S Subramanian, A Dentai, S Chadrasekhar and S M Goodnick J. Appl. Phys. 88 3765 (2000)

    Article  ADS  Google Scholar 

  41. E Enlow, R Pease and W Combs IEEE Trans. Nucl. Sci. 38 1342 (1991)

    Article  ADS  Google Scholar 

  42. F Campabadal et al. Nucl. Inst. Methods Phys. Res. A 552 292 (2005)

    Article  ADS  Google Scholar 

  43. J Metcalfe et al. Nucl. Inst. Methods Phys. Res. A 579 833 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. D. Kanjilal, Dr. D. K. Avasthi, Dr. A. Tripathi and Dr. K. Asokan, IUAC, New Delhi for providing the experimental facilities. The financial support by Department of Science and Technology (DST), Government of India (Project No. SR/S2/CMP-0034/2012) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P Gnana Prakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinayakprasanna, N.H., Praveen, K.C., Pushpa, N. et al. A comparison of 100 MeV oxygen ion and 60Co gamma irradiation effects on advanced 200 GHz SiGe heterojunction bipolar transistors. Indian J Phys 89, 789–796 (2015). https://doi.org/10.1007/s12648-015-0654-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0654-3

Keywords

PACS Nos.

Navigation