Skip to main content
Log in

Characterization of nanophase TiO2 synthesized by sol–gel method

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) nanoparticles have been prepared using sol–gel synthesis route and characterized by X-ray diffraction, transmission electron microscopy, infra-red spectroscopy, UV–visible spectroscopy, photoluminescence spectroscopy and Raman spectroscopy. Crystallite size and lattice strain on peak broadening of TiO2 nanoparticles have been studied using Williamson–Hall analysis. Absorption and photoluminescence spectra of anatase TiO2 samples have been shifted to the blue region, which has been attributed to quantum size effect. Raman bands for TiO2 nanoparticle samples slightly shift to higher wavenumber side compared to literature values for bulk sample, which could be due to the increasing force constants caused by reduction in particle size. Present study reveals that nonstoichiometry, defects and size variation of particles have a great influence on optical band gap, blue shift and Raman band modification, which in turn enhance optical absorption performance and photo-activity of TiO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H Zhang and J F Banfield J. Mater. Chem. 8 2073 (1998)

    Article  Google Scholar 

  2. H Z Zhang and J F Banfield J. Phys. Chem. B104 3481 (2000)

    Article  Google Scholar 

  3. B Liu, L Wen and X Zhao Mater. Chem. Phys. 106 350 (2007)

    Article  Google Scholar 

  4. K P Priyanka, S Joseph, A T Sunny and T Varghese Nanosystems: Phys. Chem. Maths. 4 218 (2013)

    Google Scholar 

  5. W Li, S I Shah, C P Huang, O Jung and C Ni Mater. Sci. Eng. B96 247 (2002)

    Article  Google Scholar 

  6. A Tsevis, N Spanos, P G Koutsoukos, Ab J van der Linde and J Lyklema J. Chem. Soc. Faraday Trans. 94 295 (1998)

    Article  Google Scholar 

  7. M Howe Grant Encyclopedia of Chemical Technology (New York: John Wiley) 24 (1997)

  8. M I Litter and J A Navio J. Photochem. Photobiol. A. Chem. 84 183 (1994)

    Article  Google Scholar 

  9. L Palmisano, V Augugliaro, A Sclafani, and M Schiavello J. Phys. Chem. 92 6710 (1998)

    Article  Google Scholar 

  10. Y Wang, H Cheng and Y Hao, J Ma, W Li and S Cai J. Mater. Sci. 34 3721 (1999)

    Article  ADS  Google Scholar 

  11. H Cheng, J Ma, Z Zhao and L Qi Chem. Mater. 7 663 (1995)

    Article  Google Scholar 

  12. Z Ding, X Hu, G Q Lu, P L Yue and P F Greenfield Langmuir 16 6216 (2000)

    Article  Google Scholar 

  13. C C Wang, Z Zhang and J Y Ying Nano Structured Mater. 9 583 (1997)

    Article  Google Scholar 

  14. T Varghese and K M Balakrishna Nanotechnology: An Introduction to Synthesis, Properties and Applications (New Delhi: Atlantic Publishers) (2011)

    Google Scholar 

  15. V D Mote, Y Purushotham and B N Dole J. Theo. Appl. Phys. 6 6 (2012)

  16. Y T Prabhu, K Venkateswara Rao, V Sesha Sai Kumar and B Siva Int. J. Eng. Adv. Tech. 2 268 (2013)

  17. A J Maira, J M Coronado, V Augugliaro, K L Yeung, J C Conesa and J Soria J. Catalysis 202 413 (2001)

    Article  Google Scholar 

  18. H C Choi, Y M Jung and S B Kim Vibrational Spectrosc. 37 33 (2005)

    Article  Google Scholar 

  19. Minh et al. J. Korean Physical Soc. 52 1629 (2008)

    Article  ADS  Google Scholar 

  20. Zhao et al. Mater. Lett. 61 79 (2007)

    Article  Google Scholar 

  21. L Ying, L S Hon, T White, R Whithers and L B Hai Mater. Transactions 44 1328 (2003)

    Article  Google Scholar 

  22. T Kavitha, A Rajendran and A Durairajan J. Emerging Tech. Advanced Eng. 3 636 (2013)

    Google Scholar 

  23. M M Ba-Abbad, A A H Kadhum, A B Mohamad, M S Takriff and K Sopian Int. J. Electrochem. Sci. 7 4871 (2012)

    Google Scholar 

  24. S H Mohamed, M El-Hagary and A S Radwan Indian J. Phys. 87 223 (2013)

    Article  ADS  Google Scholar 

  25. N Venkatachalam, M Palanichamy and V Murugesan Mater. Chem Phys. 104 457 (2007)

    Article  Google Scholar 

  26. E Stoyanov, F Langenhorst and G Steinle-Neumann Am. Miner. 92 577 (2007)

    Article  Google Scholar 

  27. D Arun Kumar, J Alex Xavier, J Merline and P X Francis J. Mater. Science 48 3700 (2013)

    Google Scholar 

  28. W Li, C Ni, H Lin, C P Huang and S Ismat Shah J. Appl. Phys. 96 6663 (2004)

    Article  ADS  Google Scholar 

  29. J Liqiang, S Xiaojun, X Baifu, W Baiqi, C Weimin and F Honggang J. Solid State Chem. 177 3375 (2004)

    Article  ADS  Google Scholar 

  30. M H Mangrola, B H Parmar, A S Pillaia and V G Joshi Edu. Global Quest 1 138 (2012)

    Google Scholar 

  31. S K Gupta, Rucha Desai, P K Jha, S P Sahoo and D Kirin J. Raman Spectroscopy 41 350 (2010)

    Google Scholar 

  32. U Balachandran and N G Eror J. Sol. Stat. Chem. 42 276 (1982)

    Google Scholar 

  33. T Ohsaka J. Phys. Soc. Jpn. 48 1661 (1980)

    Article  ADS  Google Scholar 

  34. H C Choi, Y M Jung and S B Kim Vibrational Spectrosc. 37 33 (2005)

    Article  Google Scholar 

  35. C Y Xu, P X Zhang and L Yan J. Raman Spectrosc. 32 862 (2001)

    Article  ADS  Google Scholar 

  36. F D Hardcastle and J Arkanas Acad. Sci. 65 43 (2011

    Google Scholar 

  37. R S Krishnan and J Russel Brit. J. Appl. Phys. 17 501 (1996)

    Google Scholar 

  38. I R Beattie and T R Gilson Proc. R. Soc. A 307 407 (1968)

    Article  ADS  Google Scholar 

  39. Y Hara and M Nicol Phys. Status Solidi B 94 317 (1979)

    Article  ADS  Google Scholar 

  40. T Bezrodna, T Gavrilko, G Puchkovska, V Shimanovska, J Baran and M Marchewka J. Mol. Struct. 614 315 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors thank Nirmala College, Muvattupuzha for providing opportunity to undertake this study. Authors are grateful to KSCSTE, Thiruvananthapuram for providing financial support to carry out this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Varghese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priyanka, K.P., Sheena, P.A., Aloysius Sabu, N. et al. Characterization of nanophase TiO2 synthesized by sol–gel method. Indian J Phys 88, 657–663 (2014). https://doi.org/10.1007/s12648-014-0475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0475-9

Keywords

PACS Nos.

Navigation