Skip to main content
Log in

Finite-time modified projective synchronization between two different chaotic systems with parameter and model uncertainties and external disturbances via sliding control

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, a sliding model control approach is introduced to realize modified projective synchronization between two different chaotic systems in a finite time. The effects of parameter and model uncertainties and external disturbances are fully taken into account. First, a novel sliding surface is proposed and its finite-time convergence to zero is analytically proved. Then, an appropriate robust sliding mode control law is given to ensure occurrence of sliding motion in a finite time. Illustrative examples are presented to show efficiency and applicability of the proposed finite-time control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L M Pecora and T L Carroll Phys. Rev. Lett. 64 821 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. R N Chitra and V C Kuriakose CHAOS 18 013125 (2008)

    Article  ADS  Google Scholar 

  3. L Lü and C R Li Nonlinear Dyn. 63 699 (2011)

    Article  Google Scholar 

  4. G H Li, C A Xiong, X N Sun Chaos, Solitons Fractals 32 561 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. F Farivar, M A Nekoui, M A Shoorehdeli and M Teshnehlab Indian J. Phys. 86 901 (2012)

    Article  ADS  Google Scholar 

  6. P Zhou and R Ding Indian J. Phys. 86 497 (2012)

    Article  ADS  Google Scholar 

  7. Z W Sun Indian J. Phys. 87 275 (2013)

    Article  ADS  Google Scholar 

  8. R Z Luo, Y L Wang and S C Deng CHAOS 21 043114 (2011)

    Article  ADS  Google Scholar 

  9. H L Zhu and X B Zhang J. Inform. Comput. Sci. 4 33 (2009)

    Google Scholar 

  10. N Cai, Y W Jing and S Y Zhang Commun. Nonlinear Sci. Numer. Simulat. 15 1613 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. F Farivar, M A Shoorehdeli, M A Nekoui and M Teshnehlab Nonlinear Dyn. 67 1913 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. G M Mahmoud and E E Mahmoud Nonlinear Dyn. 73 2231 (2013)

    Article  Google Scholar 

  13. Y G Yu and H X Li Nonlinear Anal.: RWA 12 388 (2011)

    Article  MATH  Google Scholar 

  14. M Rafikov and J M Balthazar Phys. Lett. A 333 241 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. R Z Luo Phys. Lett. A 372 648 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. M F Hu and Z Y Xu Nonlinear Anal.: RWA 9 1253 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. C Li, J Xiong, W Li, Y Tong and Y Zeng Indian J. Phys. 87 673 (2013)

    Article  ADS  Google Scholar 

  18. J M V Grzybowski, M Rafikov and J M Balthazar Commun. Nonlin. Sci. Numer. Simulat. 14 2793 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. S Banerjee, L Rondoni and S Mukhopadhyay Opt. Commun. 284 4623 (2011)

    Article  ADS  Google Scholar 

  20. A M Tusset, J M Balthazar and J L P Felix J. Vib. Control 19 803 (2012)

    Article  Google Scholar 

  21. W Li, Z Liu and J Miao Commun. Nonlinear Sci. Numer. Simul. 15 3015 (2010)

    Article  ADS  Google Scholar 

  22. M Zribi, N Smaoui and H Salim Chaos Solitons Fractals 42 3197 (2010)

    Article  ADS  Google Scholar 

  23. H T Yau Chaos Solitons Fractals 22 341 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. J W Feng, L He, C Xu, A Francis and G Wu Commun. Nonlinear Sci. Numer. Simulat. 15 2546 (2010)

    Article  MATH  Google Scholar 

  25. S Etemadi, A Alasty and H Salarieh Phys. Lett. A 357 17 (2005)

    Article  ADS  Google Scholar 

  26. M Pourmahmood, S Khanmohammadi and G Alizadeh Commun. Nonlinear Sci. Numer. Simulat. 16 2853 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. P M Aghababa, S Khanmohammadi and G Alizadeh Appl. Math. Model. 35 3080 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. M Yahyazadeh, A R Noei and R Ghaderi ISA Trans. 50 262 (2011)

    Article  Google Scholar 

  29. C C Yang Nonlinear Dyn. 69 21 (2012)

    Article  MATH  Google Scholar 

  30. M P Aghababa and H Feizi Transact. Inst. Meas. Control 34 990 (2012)

    Article  Google Scholar 

  31. E N Lorenz J. Atmos. Sci. 20 130 (1963)

    Article  ADS  Google Scholar 

  32. V Sundarapandian and I Pehlivan Math. Comput. Model. 55 1904 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Q Jia Phys. Lett. A 366 217 (2007)

    Article  ADS  MATH  Google Scholar 

  34. N Smaoui, A Karouma and M Zribi Commun. Nonlin. Sci. Numer. Simulat. 16 3279 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to anonymous reviewers for their valuable comments and suggestions, which has led to better presentation of this paper. This work was supported by the National Natural Science Foundation of China under Grant Nos. 11361043 and 61304161; the Natural Science Foundation of Jiangxi Province under Grant No. 20122BAB201005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Z Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, R.Z., Wang, Y.L. Finite-time modified projective synchronization between two different chaotic systems with parameter and model uncertainties and external disturbances via sliding control. Indian J Phys 88, 301–309 (2014). https://doi.org/10.1007/s12648-013-0410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-013-0410-5

Keywords

PACS Nos.

Navigation