Skip to main content
Log in

Pressure effect on spin–orbit interaction in a spherical quantum antidot

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present work, the Schrödinger equation is analytically solved for a GaAs/Ga1-x Al x As spherical quantum antidot with a hydrogenic donor impurity at the center. Then, the effect of pressure on the spin–orbit interaction and binding energy of the quantum antidot is studied within the effective mass approximation. It is observed that (i) the binding energy increases with increasing pressure, (ii) the level splitting increases by increasing pressure and (iii) the splitting decreases with increasing antidot size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L C L Y Voon and M Willatzen J. Phys. Condens. Matter 14 13667 (2002)

    Article  ADS  Google Scholar 

  2. R Khordad, S Tafaroji, R Katebi and A Ghanbari Commun. Theor. Phys. 57 1076 (2012)

    Article  ADS  MATH  Google Scholar 

  3. R Khordad and B Mirhosseini Opt. Commun. 285 1233 (2012)

    Article  ADS  Google Scholar 

  4. R Khordad Indian J. Phys. 86 513 (2012)

    Article  Google Scholar 

  5. R Khordad Indian J. Phys. 86 653 (2012)

    Article  Google Scholar 

  6. N Aquino, E Castano and E L Koo Chin. J. Phys. 41 276 (2003)

    Google Scholar 

  7. C Y Hsieh and D S Chuu J. Phys. Condens. Matter 12 8641 (2000)

    Article  ADS  Google Scholar 

  8. V A Holovatsky, O M Makhanets and O M Voitsekhisska Physica E 41 1522 (2009)

    Article  ADS  Google Scholar 

  9. J Cui et al Appl. Phys. Lett. 83 2907 (2003)

    Article  ADS  Google Scholar 

  10. O Voskoboynikov and C P Lee Physica E 20 278 (2004)

    Article  ADS  Google Scholar 

  11. J Planelles, J I Climente and F Rajadell Physica E 33 370 (2006)

    Article  ADS  Google Scholar 

  12. I Zutic and J Fabian Nature 447 269 (2007)

    Article  ADS  Google Scholar 

  13. I Zutic, J Fabian and S Das Sarma Rev. Mod. Phys. 76 323 (2004)

    Article  ADS  Google Scholar 

  14. I Zutic, J Fabian and S Das Sarma Appl. Phys. Lett. 79 1558 (2001)

    Article  ADS  Google Scholar 

  15. G E Pikus and A N Titkov, Optical Orientation ed. F Meier and B P Zakharchenya (New York: Elsevier Science) (1984)

  16. J C Egues, G Burkard and D Loss Phys. Rev. Lett. 89 176401 (2002)

    Article  ADS  Google Scholar 

  17. E I Rashba and A L Efors Phys. Rev. Lett. 91 126405 (2003)

    Article  ADS  Google Scholar 

  18. W Kohn Solid State Phys. 5 257 (1957)

    Article  Google Scholar 

  19. H Haug and S W Koch Quantum theory of the optical and electronic properties of semiconductors, (Singapore: World Scientific) 3rd ed. (1994)

    MATH  Google Scholar 

  20. G Bastard Phys. Rev. B 24 4714 (1981)

    Article  ADS  Google Scholar 

  21. J Bhadra and D Sarkar Indian J. Phys. 84 1321 (2010)

  22. J Bhadra and D Sarkar Indian J. Phys. 84 693 (2010)

    Article  Google Scholar 

  23. W Xie J. Luminescence 131 943 (2011)

    Article  ADS  Google Scholar 

  24. R Khordad Superlatt. Microstruct. 47 422 (2011)

    Article  ADS  Google Scholar 

  25. A J Peter and K Navaneethakrishnan Superlatt. Microstruct. 43 63 (2008)

    Article  ADS  Google Scholar 

  26. A Abramowitz and I Stegun Handbook of mathematical function with formulas, graphs and mathematical tables (Wshington DC: National Bureau of Standards) (1994)

    Google Scholar 

  27. G A Samara Phys. Rev. B 27 3494 (1983)

    Article  ADS  Google Scholar 

  28. R F Kopf et al J. Appl. Phys. 71 5004 (1992)

    Article  ADS  Google Scholar 

  29. J M Mercy et al Surf. Sci. 142 298 (1984)

    Article  ADS  Google Scholar 

  30. D E Aspnes Phys. Rev. B 14 5331 (1976)

    Article  ADS  Google Scholar 

  31. B Welber, M Cardona, C K Kim and S Rodriquez Phys. Rev. B 12 5729 (1975)

    Article  ADS  Google Scholar 

  32. H Ehrenrich J. Appl. Phys. 32 2155 (1961)

    Article  ADS  Google Scholar 

  33. E O Kane J. Phys. Chem. Solids. 1 249 (1957)

    Article  ADS  Google Scholar 

  34. R Khordad Physica B 407 1128 (2012)

    Article  ADS  Google Scholar 

  35. W Paul J. Appl. Phys. 32 2082 (1961)

    Article  ADS  Google Scholar 

  36. S Adachi J. Appl. Phys. 58 R1 (1985)

    Article  ADS  Google Scholar 

  37. R L Kallaher, J J Heremans, N Goel, S J Chung and M B Santos Phys. Rev. B 81 075303 (2010)

    Article  ADS  Google Scholar 

  38. C C Yang, L C Liu and S H Chang Phys. Rev. B 58 1954 (1998)

    Article  ADS  Google Scholar 

  39. R S Daries Bella and K Navaneethakrishnan Solid State Commun. 130 773 (2004)

    Article  ADS  Google Scholar 

  40. S Rajashabala and K Navaneethakrishnan Physica E 40 843 (2008)

    Article  ADS  Google Scholar 

  41. J E Furst, W M K P Wijayaratna, D H Madison and T J Gay Phys. Rev. A 47 3775 (1993)

    Article  ADS  Google Scholar 

  42. P T C Freire, V Lemos, O Pilla and N D Vieira Jr J. Chem. Phys. 110 3995 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khordad, R., Fathizadeh, N. Pressure effect on spin–orbit interaction in a spherical quantum antidot. Indian J Phys 87, 229–234 (2013). https://doi.org/10.1007/s12648-012-0222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0222-z

Keywords

PACS Nos.

Navigation