Skip to main content
Log in

Effects of local relaxation on electronic structure of substitutional Mn atoms in (GaMn)As

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We have investigated the effects of local relaxation on the electronic structure of Mn atoms in (GaMn)As and the related properties of this dilute magnetic semiconductor (DMS). The nearest neighbours of the substitutional Mn atom have been considered for relaxed and non-relaxed conditions, while the other atoms have been left unaffected by the Mn impurity. Gallium Arsenide (GaAs), when doped with Mn atoms in a small concentration, becomes ferromagnetic retaining its semiconductor properties and it also acquires half metallic character. These characteristics of this DMS are vital for spintronic applications. We have implemented the scheme of pseudopotential method within the density functional formalism to calculate the electronic structure of (GaMn)As and computed the total density of states and partial density of states under the supercell scheme for unrelaxed and relaxed nearest neighbours of the substitutional Mn atom. We have also discussed a more realistic approach to calculate the local magnetic moment in this kind of systems. At the end, we have discussed the relevance of the present research work in the spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T Jungwirth, J Sinova, J Masek, J Kucera and A H MacDonald Rev. Mod. Phys. 78 809 (2006).

    Article  ADS  Google Scholar 

  2. K M Yu, W Walukiewicz, T Wojtowicz, I Kuryliszyn, X Liu, Y Sasaki and J K Furdyna Phys. Rev. B65 201303 (2002).

    ADS  Google Scholar 

  3. M Jain, L Kronik and J R Chelikowsky Phys. Rev. B64 245205 (2001).

    ADS  Google Scholar 

  4. N K Saxena, N Kumar and P K S Pourush Indian J. Phys. 84 1193 (2010).

  5. M Shirai, T Ogawa, I Kitagawa and N Suzuki J. Magn. Magn. Mater. 1383 177 (1998).

    Google Scholar 

  6. H Ohno et al. Appl Phys. Lett. 69 363 (1996).

    Article  ADS  Google Scholar 

  7. T Dietl, H Ohno, F Matsukura, J Cibert and J Ferrand Science 287 1019 (2000).

    Article  ADS  Google Scholar 

  8. W Kohn, A D Becke and R G Parr J. Phys. Chem. 100 12974 (1996).

    Article  Google Scholar 

  9. M A Ruderman and C Kittel Phys. Rev. 96 99 (1954).

    Article  ADS  Google Scholar 

  10. A Zunger, S Lany and H Raebiger Physics 3 53 (2010).

    Article  Google Scholar 

  11. P Giannozzi et al. J.Phys. Condens. Matter 21 395502 (2009).

    Article  Google Scholar 

  12. J H Park, S K Kwon and B I Min Physica B 703 281 (2000).

    Google Scholar 

  13. M Shirai, T Ogawa, I Kitagawa and N Suzuki J. Magn. Magn. Mater. 1383 177 (1998).

    Google Scholar 

  14. S Sanvito and N A Hill Phys. Rev. B 62 15553 (2000).

    Article  Google Scholar 

  15. N Parhi, G C Rout and S N Behera Indian J. Phys. 84 1369 (2010).

    Article  ADS  Google Scholar 

  16. V F Sapega, M Moreno, M Ramsteiner, L Daweritz and K Ploog Phys. Rev. B 66 075217 (2002).

    Article  ADS  Google Scholar 

  17. U Scheuer and B Lengeler Phys. Rev. B44 3883 (1991).

    Google Scholar 

  18. D Guenzburger and D E Ellis Phys. Rev. Lett. 67 3832 (1991).

    Article  ADS  Google Scholar 

  19. W Koch and M C Holthausen A Chemist’s Guide to Density Functional Theory, 2nd edn. (Weinheim: Wiley-VCH) p 293 (2001).

  20. We used the pseudopotentials Mn.pbe-sp-van.UPF, As.pbe-n-van.UPF from http://www.quantumespresso.org..

  21. P Mahadevan and A Zunger Phys. Rev. B 69 115211 (2004).

    Article  ADS  Google Scholar 

  22. D P Rai, J Hashemifar, M Jamal, Lalmuanpuia, M P Ghimire, Sandeep, D T Khathing, P K Patra, B I Sharma, Rosangliana and R K Thapa Indian J. Phys. 84 717 (2010).

    Article  Google Scholar 

  23. M Linnarsson, E Janzen, B Monemar, M Kleverman and A Thilderkvist Phys. Rev. B 55 6938 (1997).

    Article  ADS  Google Scholar 

  24. P-O Löwdin J. Chem. Phys. 18 365 (1950).

    Article  ADS  Google Scholar 

  25. P-O Löwdin Adv. Quantum Chem. 5 185 (1970).

    Article  ADS  Google Scholar 

  26. G Bruhn, E R Davidson, I Mayer and A E Clark Int. J. Quantum Chem. 106 2065 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Rana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rana, N.K., Prasad, J.N. Effects of local relaxation on electronic structure of substitutional Mn atoms in (GaMn)As. Indian J Phys 86, 601–604 (2012). https://doi.org/10.1007/s12648-012-0095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0095-1

Keywords

PACS Nos.

Navigation