Skip to main content
Log in

Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The real-time monitoring of lead ion interaction on gold/chitosan surface has been explored using surface plasmon resonance spectroscopy to study the kinetics of lead ion adsorption. The gold/chitosan surface has been prepared by spin coating of 0.55 ml chitosan solution at 6,000 rev/min for 30 s on a thin gold film. The shift of resonance angle has been found to increase exponentially with time for all the concentration of lead ion in the range of 0.5–100 ppm; and reach to a saturation value. At low concentration (5 ppm and below), the kinetic reaction was complete and reached to saturation value in about 2 min, while a more complex kinetic profile has been observed and complete at approximately 8 min for higher concentration (more than 5 ppm). The saturation value for the shift of resonance angle is directly proportional to the lead ion concentration. The sensitivity of lead ion detection for this SPR-gold/chitosan is as 0.00483 and 0.00675 ppm−1, for 0–100 ppm and 0–10 ppm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J Homola, S S Yee and G Gauglitz Sens. Actuators B: Chem. 54 3 (1999)

    Article  Google Scholar 

  2. N J Tao, S Boussaad, W L Huang, R A Arechabalets and J. D’Agnese Rev. Sci. Instrum. 70 4656 (1999)

    Article  ADS  Google Scholar 

  3. K Kurihara, K Suzuki Anal. Chem. 74 696 (2002)

    Article  Google Scholar 

  4. D Sajan, T Kuruvilla, K P Laladhas and I H Joe Indian J. Phys. 85 477 (2011)

    Article  ADS  Google Scholar 

  5. S K Gorai and P Mahato, Indian J. Phys. 84 587 (2010)

    Article  ADS  Google Scholar 

  6. S Boussaad, J Pean and N J Tao Anal. Chem. 72 222 (2000)

    Article  Google Scholar 

  7. R Georgiadis, K P Peterlinz and A W Peterson J. Am. Chem. Soc. 122 3166 (2000)

    Article  Google Scholar 

  8. D Sarkar and P Somasundaran J. Colloid Interface Sci. 261 197 (2003)

    Article  Google Scholar 

  9. T Kang, J Moon, S Oh, S Hong, S Chah and J Yi Chem. Commun.18 2360 (2005)

    Article  Google Scholar 

  10. W Y W Yusmawati, H P Chuah and W M M Yunus Am. J. Applied Sci. 4 1 (2007)

    Article  Google Scholar 

  11. J Moon, T Kang, S Oh, S Hong and J Yi J. Colloid Interface Sci. 298 543 (2006)

    Article  Google Scholar 

  12. E Onsoyen and O Skaugrud J. Chem. Technol. Biotechnol. 49 395 (1990)

    Article  Google Scholar 

  13. P C Covas, L W Alvarez and W Arg¨uelles-Monal J. Appl. Polym. Sci. 46 1147 (1992)

    Article  Google Scholar 

  14. Y Kawamura, M Mitsuhashi, H Tanibe and H. Yoshida Ind. Eng. Chem. Res. 32 386 (1993)

    Article  Google Scholar 

  15. R Bassi, S O Prasher and B K Simpson Sep. Sci. Technol. 35 547 (2000)

    Article  Google Scholar 

  16. L Qi and Z Xu Colloids Surf. A 251 183 (2004)

    Article  Google Scholar 

  17. E Guibal Sep. Purif. Technol. 38 43 (2004)

    Article  Google Scholar 

  18. K H Chu J. Hazard. Mater. B90 77 (2002)

    Article  Google Scholar 

  19. W S W Ngah, C S Endud and R Mayanar React. Funct. Polym. 50 181 (2002)

    Article  Google Scholar 

  20. J D Merrifield, W G Davids, J D MacRae and A Amirbahman Water Res. 38 3132 (2004)

    Article  Google Scholar 

  21. H A McIlwee, C L Schauer, V G Praig, R Boukherroub and S Szunerits Analyst 133 673 (2008)

    Article  ADS  Google Scholar 

  22. A K Sharma, R Jha and B D Gupta IEEE Sens. J. 7 1118 (2007)

    Article  Google Scholar 

  23. M Kanso, S Cuenot and G Louarn Plasmonics 3 49 (2008)

    Article  Google Scholar 

  24. S A Zynio, A V Samoylov, E R Surovtseva, V M Mirsky and Y M Shirshov Sensors 2 62 (2002)

    Article  Google Scholar 

  25. R P Podgorsek and H Franke Sens. Actuator B: Chem. 30 201 (1996)

    Article  Google Scholar 

  26. G Meier and G Fytas, Optical Technique to Characterize Polymer System (New York: Elsevier) (1989)

    Google Scholar 

  27. R Djingova and I Kuleff Instrumental techniques for trace analysis in Trace Elements: Their Distribution and Effects in the Environment (eds.) B Markert and K Friese (New York: Elsevier) (2000)

Download references

Acknowledgments

The authors would like to thank the Malaysian Government for the fund support through SAGA and FRGS (No. 5523901) research grants. The laboratory facilities provided by the Department of Physics, Faculty of Science, Universiti Putra Malaysia, are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. W. Fen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fen, Y.W., Yunus, W.M.M. & Talib, Z.A. Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy. Indian J Phys 86, 619–623 (2012). https://doi.org/10.1007/s12648-012-0082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0082-6

Keywords

PACS Nos.

Navigation