Skip to main content
Log in

Design of a Stable DC Voltage Source and Computer Controlling of It Using an Indigenously Developed All-Digital Addressing-Cum-Control Hardware

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

We have developed a digitally operated addressing and control module (DACM) for addressing and controlling of equipment from a remote computer using a communication protocol developed in-house. This is useful for automation of an experiment that uses multiple equipment in a pre-decided synchronized manner. We also report design of a multipurpose high voltage direct current (DC) source that provides output of 0–100 V with an average stability of 1.90 (36) mV and has minimum step size of 3 mV. Operation of the DACM is examined by selecting the desired equipment, which in this case is the dc source, and remotely controlling its output from a computer. We also show that this can generate voltage with different waveforms within a 0–10 Hz frequency bandwidth. Such computer controlled ultra-stable high voltage sources tuneable to any arbitrary waveforms at low frequencies have many applications such as, driving a piezo for smooth scanning of laser frequencies, tuning length of a Fabry–Perot cavity, biasing of the electrodes in an ion trap and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Throughout in this article quantities within {} defines a digital BUS.

References

  1. S. De, N. Batra, S. Chakraborty, S. Panja and A. Sen Gupta, Design of an ion trap for trapping single 171Yb+, Curr. Sci. 106 (2014) 1348.

    Google Scholar 

  2. N. Batra, B.K. Sahoo and S. De., An optimized ion trap geometry to measure quadrupole shifts of 171Yb+ clocks, Chin. Phys. B, 25 (2016) 113703.

    Article  ADS  Google Scholar 

  3. A. Acharya, V. Bharath, P. Arora, et al., Systematic uncertainty evaluation of cesium fountain primary frequency standard at NPL India, MAPAN-J. Metrol. Soc India, 32 (2017) 67. https://doi.org/10.1007/s12647-016-0190-4.

    Article  Google Scholar 

  4. K. Pant, P. Arora, S. Yadav. et al., Generation of quadrupole magnetic field for trapping atoms in Cs fountain being developed at NPL India, MAPAN-J. Metrol. Soc India, 26 (2011) 285. https://doi.org/10.1007/s12647-011-0026-1.

    Article  Google Scholar 

  5. A. Rastogi, N. Batra, A. Roy, J. Thangjam, V.P.S. Kalsi, S. Panja and S. De, Design of the ion trap and vacuum system for 171Yb –ion optical frequency standard, MAPAN-J. Metrol. Soc India, 30 (2015) 169.

    Article  Google Scholar 

  6. N. Batra, S. Panja, S. De, A. Roy, S. Majhi, S. Yadav and A. Sen Gupta, Design and construction of a helical resonator for delivering radio frequency to an ion trap, MAPAN-J. Metrol. Soc India, 32 (2017) 193.

    Article  Google Scholar 

  7. S. Yadav, A. Acharya, P. Arora, and A. Sen Gupta, An electronic sequence controller for the Cs fountain frequency standard developed at CSIR-NPL India, Measurement, 75 (2015) 192.

    Article  Google Scholar 

  8. A. Agarwal and A. Sen Gupta, Frequency and intensity control of lasers to cool and control caesium atoms. MAPAN-J. Metrol. Soc India, 27 (2012) 169.

    Article  Google Scholar 

  9. P. Arora, S.B. Purnapatra, A. Acharya, R. Kumar and A. Sen Gupta, Measurement of temperature of atomic cloud using timeof-flight technique. MAPAN-J. Metrol. Soc India, 27 (2012) 31.

    Article  Google Scholar 

  10. A. Acharya, S. De, P. Arora, and A. Sen Gupta., A universal driver for vibration free operation of mechanical shutter, Measurement, 61 (2014) 16.

    Article  Google Scholar 

  11. H.J. Lewandowski, D.M. Harber, D.L. Whitaker and E.A. Cornell (2003) url - http://jila.colorado.edu/bec/CornellGroup/JLTP Lewandowski2003.pdf.

  12. S.F. Owen and D.S. Hal, Fast line based timming system for lab view, Rev. Sci. Instrum., 75 (2004) 259.

    Article  ADS  Google Scholar 

  13. D.S. Hall, Triggerable general-purpose interface bus controller, Rev. Sci. Instrum., 75 (2004) 562.

    Article  ADS  Google Scholar 

  14. P.E. Gaskell, J.J. Thorn, S. Alba and D.A. Steck, An open source, extensible system for laboratory timing and control, Rev. Sci. Instrum., 80 (2009) 115103.

    Article  ADS  Google Scholar 

  15. A. Keshet and W. Ketterle, A distributed, graphical user interface based, computer control system for atomic physics experiments, Rev. Sci. Instrum., 84 (2013) 015105.

    Article  ADS  Google Scholar 

  16. E.E. Eyler, A single-chip event sequencer and related microcontroller instrumentation for Atomic physics research, Rev. Sci. Instrum., 82 (2011) 013105.

    Article  ADS  Google Scholar 

  17. E. E. Eyler, Instrumentation for laser physics and spectroscopy using 32-bit microcontrollers with an Android tablet interface, Rev. Sci. Instrum., 84 (2013) 103101.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SD thanks Florian Schreck, U. Amsterdam, Netherlands for useful discussions.

Funding

This work was supported by CSIR-National Physical Laboratory, Department of Science and Technology (Grant No. SB/S2/LOP/033/2013) and Board of Researchin Nuclear Science (Grant No. 34/14/19/2014-BRNS/0309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. De.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Batra, N., Majhi, S. et al. Design of a Stable DC Voltage Source and Computer Controlling of It Using an Indigenously Developed All-Digital Addressing-Cum-Control Hardware. MAPAN 33, 139–145 (2018). https://doi.org/10.1007/s12647-017-0241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-017-0241-5

Keywords

Navigation