Skip to main content
Log in

Studies on Low Altitude Clouds Over New Delhi, India Using Lidar

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

This study reports the altitude distribution of physical and optical properties of clouds in the lower troposphere over the urban tropical region Delhi using an UV (355 nm) lidar which is capable of operating in both day and night time. Most of the low altitude clouds are observed above the planetary boundary layer during the observation period. The low altitude cloud bottom and top height varies between 0.58 ± 0.21 and 1.5 ± 0.61 km respectively during the observation period. The depolarization ratio of the observed clouds varies from 0.18 ± 0.01 to 1.2 ± 0.58. The role of the atmospheric region below the cloud in the growth process of the cloud cell is studied. Cloud turbulence is derived to show its role in maintaining the strength of the cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. V. Gorodetskaya, S. Kneifel, M. Maahn, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig, Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica, The Cryosphere, 9(2015) 285–304.

    Article  ADS  Google Scholar 

  2. C. Nam, S. Bony, J. L. Dufresne, and H. Chepfer, The too few, too bright’ tropical low-cloud problem in CMIP5 models, Geophys. Res. Lett., 39(2012) L21801.

    Article  ADS  Google Scholar 

  3. A. D. Del Genio, W. Kovari, M. S. Yao, and J. Jonas, Cumulus microphysics and climate sensitivity, J. Clim., 18(2005) 2376–2387.

    Article  ADS  Google Scholar 

  4. R. S. Stone, and J. D. Karl, Variations in boundary layer properties associated with clouds and transient weather disturbances at the South pole during winter, J. Geophys. Res., 96(1991) 5137–5144.

    Article  ADS  Google Scholar 

  5. P. Zhu, V. D. Albrecht, and J. C. Gottschalck, Formation and development of nocturnal boundary layer clouds over the Southern Great Plains, J. Atmos. Sci., 58(2001) 1409–1426.

    Article  ADS  Google Scholar 

  6. E. Malek, Cloud contribution to the daily and annual radiation budget in a mountainous valley, Atmos. Res., 88(2008) 367–380.

    Article  Google Scholar 

  7. M. K. Sporre, P. Glantz, P. Tunved, E. Swietlicki, M. Kulmala, H. Lihavainen, A study of the indirect aerosol effect on subtropic marine liquid low level clouds using MODIS cloud data and ground-based aerosol measurements, Atmos. Res. 116(2012) 56–66.

    Article  Google Scholar 

  8. M. Satyanarayana, D. Ramakrishna Rao, S. V. Mohankumar, and B. Presennakumar, Multiwavelength laser radar studies in the atmosphere, Asian J. Phys., 18(2000) 191–195.

    Google Scholar 

  9. Bhavanikumar, Y., V. Siva Kumar, A. R. Jain, and P. B. Rao, MST radar and polarization lidar observations of tropical cirrus, Ann. Geophys., 19 (2001) 873–882.

    Article  ADS  Google Scholar 

  10. P. C. S. Devara, P. E. Raj, K. K. Adani, G. Pandithurai, M. C. R. Kalappureddy, S. M. Sonbawne, Y. J. Rao, and S. K. Saha, Mobile lidar profiling of tropical aerosols and clouds. J. Atmos. Ocean Tech. 25(2008), 1288–1295.

    Article  Google Scholar 

  11. S. R. Radhakrishnan S. R, M. Satyanarayana, V. Krishnakumar, V. P. Mahadevan Pillai, K. Raghunath, M. Venkata Ratnam, and D. Ramakrishna Rao, Optical properties of cirrus clouds at a tropical Indian station Gadanki (13.50 N, 79.20 E), Tirupati, J. Appl. Remote Sens., 4(2010) 043559.

  12. R. Maurya, P. K. Dubey, D. K. Shukla, K. Arun, B. C. Arya, S. L. Jain, Comparison of indigenously developed micro pulse polarization lidar with EZ lidar profiles, Appl. Phys. B., 104(2011) 975–982.

    Article  ADS  Google Scholar 

  13. P. K. Dubey, S. L. Jain, B. C. Arya, and P. S. Kulkarni, Depolarization ratio measurement using single multiplier tube in micro pulse lidar, Rev. Sci. Instrum., 80(2009) 05311.

    Article  Google Scholar 

  14. P. K. Dubey, S. L. Jain, B. C. Arya, Y. N. Ahammed, K. Arun, D. K. Shukla, S. K. Pavan, Indigenous design and development of a micro-pulse lidar for atmospheric Studies, Int. J. Remote. Sens., 32(2011) 337–351.

    Article  ADS  Google Scholar 

  15. [15] B.A. Albrecht, Aerosols, cloud microphysics, and fractional cloudiness, Science 245(1989) 1227–1230.

    Article  ADS  Google Scholar 

  16. D. Rosenfeld, Suppression of rain and snow by urban and industrial air pollution, Science, 312(2000) 1323–1324.

    Article  Google Scholar 

  17. S. K. Satheesh, and V. Ramanathan, Large differences in tropical aerosol forcing at the top of the atmosphere and earth’s atmosphere, Nature, 405 (2000), 60–63.

    Article  ADS  Google Scholar 

  18. R. L. Bhawar, and P. C. S. Devara, Study of successive contrasting monsoons (2001–2002) in terms of aerosol variability over a tropical station Pune, India, Atmos. Chem. Phys., 10 (2010), 29–37.

    Article  ADS  Google Scholar 

  19. A. J. Heymsfield, and G. M. McFarquar, Microphysics of INDOEX clean and polluted trade cumulus cloud, J. Geophys. Res., D22 (2001), 28,653–28,673.

  20. P. Zieger, E. Kienast Sjogren, M. Starace, J. von Bismarck, N. Bukowiecki, U. Baltensperger, F. G. Wienhold, T. Peter, T. Ruhtz, M. Collaud Coen, L. Vuilleumier, O. Maier, E. Emili, C. Popp, and E. Weingartner, Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.), Atmos. Chem. Phys., 12 (2012), 7231–7249.

  21. C. Rolf, M. Kramer, C. Schiller, M. Hildebrandt, and M. Riese, Lidar observation and model simulation of a volcanic-ash-induced cirrus cloud during the Eyjafjallajokull eruption, Atmos. Chem. Phys., 12 (2012), 10281–10294.

    Article  ADS  Google Scholar 

  22. M. V. S. N. Prasad, C. Sharma, B. C. Arya, T. K. Mandal, S. Singh, M. J. Kulshrestha, R. Agnihotri, S. K. Mishra and S. K. Sharma, Experimental facilities to monitor various types of atmospheric parameters in the radio and atmospheric sciences division (RASD) of CSIR-National Physical Laboratory, MAPAN-J. Metrol. Soc. India, 28 (3), (2013), 193–203.

  23. S. K. Sharma, T. K. Mandal, Rohtash, M.Kumar, N. C. Gupta, H. Pathak, R. Harit, and M. Saxena, Measurement of ambient ammonia over the national capital region of Delhi, India, MAPAN-J. Metrol. Soc. India, 29 (3) (2014), 165–173.

  24. S. K. Sharma, T. K. Mandal, C. Sharma, J. C. Kuniyal, R. Joshi, P. P. Dhyani, Rohtash, A. Sen, H. hayas, N.C. Gupta, P. Sharma, M. Saxena, A. Sharma, B. C. Arya, and A. Kumar, Measurements of particulate (PM2.5), BC and trace gases over the northwestern himalayan region of India, MAPAN-J. Metrol. Soc. India, 29 (4) (2014), 243–253.

  25. C. J. Tsai, I and S. G. Aggarwal, Overview of the Gas and Aerosol Metrology, MAPAN-J. Metrol. Soc. India, 28(3), (2013), 141–143.

  26. F. D. Fernald, Analysis of atmospheric lidar observations: some comments, Appl. Opt., 23 (1984) 652–653.

    Article  ADS  Google Scholar 

  27. E. D. Hinkley, Laser monitoring of the atmosphere; Topics in applied Physics, Springer, New York (1974).

    Google Scholar 

  28. M. N. Sasi and K. Sengupta, A reference atmosphere for indian equatorial zone from surface to 80 km, scientific report SPL: SR: 006:85, space physics laboratory, Vikram Sarabhai Space Centre, Kerala, India (1985).

  29. M. Osborn, M. Pittis, K. Powell and M. McCornick, SAM II aerosol measurements during the 1989 AASE, Geophys. Res. Lett., 17 (1990) 397–400.

    Article  ADS  Google Scholar 

  30. R. G. Pinnick, S. G. Jennings, P. Chýlek, C. Ham, and W. T. Grandy, Backscatter and extinction in water cloud, J. Geophys. Res., 88 (1983) 6787–6796.

    Article  ADS  Google Scholar 

  31. E. J. O’Connor, A. J. Illingworth and R. J. Hogan, A technique for auto calibration of cloud lidar, J. Atmos. Ocean. Tech., 21 (2004) 777–778.

    Article  Google Scholar 

  32. J. E. Yorks, D. L. Hlavka and D. Hart, Statistics of cloud optical properties from air borne lidar measurements, J. Atmos. Ocean. Tech., 28 (2011) 869–883.

    Article  Google Scholar 

  33. K. N. Liou and J. E. Hansen, Intensity and polarization for single scattering by polydisperse spheres: A comparison of ray optics and Mie theory, J. Atmos. Sci., 28 (1971) 995–1004.

    Article  ADS  Google Scholar 

  34. W. N. Chen, C. W. Chiang and J. B. Nee, Lidar ratio and depolarization ratio for cirrus clouds, Appl. Opt., 41 (2002) 6470–6476.

    Article  ADS  Google Scholar 

  35. M.G. Manoj, P. C. S. Devara, Y. Jaya Rao and S. M. Sonbawne, Lidar investigation of aerosol-cloud-precipitation interactions over a tropical monsoon environment: recharging of atmosphere, J. Atmos. Sol. Terr. Phys., 93 (2013) 80–86.

    Article  ADS  Google Scholar 

  36. V. I. Tatarski, Wave propagation in a turbulent medium, Dover Publication: Mineola (1961) p 285.

    MATH  Google Scholar 

  37. S. Sharma, P. C. S. Devara, P. E. Raj, G. Pandithurai, An optical scintillometer for simultaneous measurements of atmospheric \( C_{n}^{2} \) and winds, J. Inst. Electron. Commun. Eng., 40 (1994) 101–104.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, NPL and Head, RASD for the encouragement and infrastructure facilities to undertake the present study. The authors are thankful to M/S Leosphere, France for providing the lidar system. We thank CSIR Network project PSC 0112 for necessary support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Radhakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, S.R., Arya, B.C., Sharma, C. et al. Studies on Low Altitude Clouds Over New Delhi, India Using Lidar. MAPAN 31, 137–144 (2016). https://doi.org/10.1007/s12647-016-0166-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-016-0166-4

Keywords

Navigation