Skip to main content
Log in

Epigallocatechin-3-Gallate Protects and Prevents Paraquat-Induced Oxidative Stress and Neurodegeneration in Knockdown dj-1-β Drosophila melanogaster

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

A Correction to this article was published on 01 June 2018

This article has been updated

Abstract

Epigallocatechin-3-gallate (EGCG) is a polyhydroxyphenol constituent of green tea (e.g., Camellia sinensis) with known antioxidant properties. Due to these properties, others have proposed it as a potential therapeutic agent for the treatment of Parkinson’s disease (PD). Previously, we demonstrated that EGCG prolonged the lifespan and locomotor activity in wild-type Canton-S flies exposed to the neurotoxicant paraquat (PQ), suggesting neuroprotective properties. Both gene mutations and environmental neurotoxicants (e.g., PQ) are factors involved in the development of PD. Thus, the first aim of this study was to create a suitable animal model of PD, which encompasses both of these factors. To create the model, we knocked down dj-1-β function specifically in the dopaminergic neurons to generate TH > dj-1-β-RNAi/+ Drosophila melanogaster flies. Next, we induced neurotoxicity in the transgenic flies with PQ. The second aim of this study was to validate the model by comparing the effects of vehicle, EGCG, and chemicals with known antioxidant and neuroprotective properties in vivo (e.g., propyl gallate and minocycline) on life-span, locomotor activity, lipid peroxidation, and neurodegeneration. The EGCG treatment provided protection and prevention from the PQ-induced reduction in the life-span and locomotor activity and from the PQ-induced increase in lipid peroxidation and neurodegeneration. These effects were augmented in the EGCG-treated flies when compared to the flies treated with either PG or MC. Altogether, these results suggest that the transgenic TH > dj-1-β-RNAi/+ flies treated with PQ serve as a suitable PD model for screening of potential therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 01 June 2018

    The original version of this article contained mistakes, and the authors would like to publish this erratum. The “Acknowledgement” section was not included in the aforementioned manuscript.

References

  • Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SM (2013) Neuroprotective function of DJ-1 in Parkinson’s disease. Oxidative Med Cell Longev 2013:683920

    Article  CAS  Google Scholar 

  • Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91

    PubMed  PubMed Central  Google Scholar 

  • Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    Article  CAS  PubMed  Google Scholar 

  • Bonilla E, Medina-Leendertz S, Villalobos V, Molero L, Bohórquez A (2006) Paraquat-induced oxidative stress in Drosophila melanogaster: effects of melatonin, glutathione, serotonin, minocycline, lipoic acid and ascorbic acid. Neurochem Res 31(12):1425–1432

    Article  CAS  PubMed  Google Scholar 

  • Bonilla-Ramirez L, Jimenez-Del-Rio M, Velez-Pardo C (2011) Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: a model to study parkinsonism. Biometals 24(6):1045–1057

    Article  CAS  PubMed  Google Scholar 

  • Bonilla-Ramirez L, Jimenez-Del-Rio M, Velez-Pardo C (2013) Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: implication in autosomal recessive juvenile parkinsonism. Gene 512(2):355–363

    Article  CAS  PubMed  Google Scholar 

  • Canet-Avilés RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, Baptista MJ, Ringe D, Petsko GA, Cookson MR (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A 101(24):9103–9108

    Article  PubMed  PubMed Central  Google Scholar 

  • Caruana M, Vassallo N (2015) Tea polyphenols in Parkinson’s disease. Adv Exp Med Biol 863:117–137

    Article  CAS  PubMed  Google Scholar 

  • Casani S, Gómez-Pastor R, Matallana E, Paricio N (2013) Antioxidant compound supplementation prevents oxidative damage in a Drosophila model of Parkinson’s disease. Free Radic Biol Med 61:151–160

    Article  CAS  PubMed  Google Scholar 

  • Cassar M, Issa AR, Riemensperger T, Petitgas C, Rival T, Coulom H, Iché-Torres M, Han KA, Birman S (2015) A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila. Hum Mol Genet 24(1):197–212

    Article  CAS  PubMed  Google Scholar 

  • Cha GH, Kim S, Park J, Lee E, Kim M, Lee SB, Kim JM, Chung J, Cho KS (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci U S A 102(29):10345–10350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrawarti L, Agrawal R, Dang S, Gupta S, Gabrani R (2016) Therapeutic effects of EGCG: a patent review. Expert Opin Ther Pat 26(8):907–916

    Article  CAS  PubMed  Google Scholar 

  • Charan J, Biswas T (2013) How to calculate sample size for different study designs in medical research? Indian J Psychol Med 35(2):121–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Cagniard B, Mathews T, Jones S, Koh HC, Ding Y, Carvey PM, Ling Z, Kang UJ, Zhuang X (2005) Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem 280(22):21418–21426

    Article  CAS  PubMed  Google Scholar 

  • Choi JY, Park CS, Kim DJ, Cho MH, Jin BK, Pie JE, Chung WG (2002) Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridineinduced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology 23:367–374

    Article  CAS  PubMed  Google Scholar 

  • Cochemé HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 283(4):1786–1798

    Article  CAS  PubMed  Google Scholar 

  • Cookson MR (2012) Parkinsonism due to mutations in PINK1, Parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb Perspect Med 2(9):a009415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulom H, Birman S (2004) Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J Neurosci 24(48):10993–10998

    Article  CAS  PubMed  Google Scholar 

  • Dickson DW (2018) Neuropathology of Parkinson disease. Parkinsonism Relat Disord 46(Suppl 1):S30–S33

    Article  PubMed  Google Scholar 

  • Dwivedi V, Lakhotia SC (2016) Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus has anti-aging effects in Drosophila melanogaster. J Biosci 41(4):697–711

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Hernández I, Scheenaard E, Pollarolo G, Gonzalez C (2016) The translational relevance of Drosophila in drug discovery. EMBO Rep 17(4):471–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filograna R, Beltramini M, Bubacco L, Bisaglia M (2016) Anti-oxidants in Parkinson’s disease therapy: a critical point of view. Curr Neuropharmacol 14(3):260–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forester SC, Lambert JD (2011) The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Mol Nutr Food Res 55(6):844–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido-Mesa N, Zarzuelo A, Gálvez J (2013) What is behind the non-antibiotic properties of minocycline? Pharmacol Res 67(1):18–30

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MS, Pisani A, Haburcak M, Vortherms TA, Kitada T, Costa C, Tong Y, Martella G, Tscherter A, Martins A, Bernardi G, Roth BL, Pothos EN, Calabresi P, Shen J (2005) Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial parkinsonism-linked gene DJ-1. Neuron 45(4):489–496

    Article  CAS  PubMed  Google Scholar 

  • Hijioka M, Inden M, Yanagisawa D, Kitamura Y (2017) DJ-1/PARK7: a new therapeutic target for neurodegenerative disorders. Biol Pharm Bull 40(5):548–552

    Article  CAS  PubMed  Google Scholar 

  • Hosamani R, Muralidhara (2013) Acute exposure of Drosophila melanogaster to paraquat causes oxidative stress and mitochondrial dysfunction. Arch Insect Biochem Physiol 83(1):25–40

    Article  CAS  PubMed  Google Scholar 

  • Hwang S, Song S, Hong YK, Choi G, Suh YS, Han SY, Lee M, Park SH, Lee JH, Lee S, Bang SM, Jeong Y, Chung WJ, Lee IS, Jeong G, Chung J, Cho KS (2013) Drosophila DJ-1 decreases neural sensitivity to stress by negatively regulating Daxx-like protein through dFOXO. PLoS Genet 9(4):e1003412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inamdar AA, Chaudhuri A, O'Donnell J (2012) The protective effect of minocycline in a paraquat-induced Parkinson’s disease model in Drosophila is modified in altered genetic backgrounds. Parkinson’s Dis 2012:938528

    Google Scholar 

  • Jimenez-Del-Rio M, Moreno S, Garcia-Ospina G, Buritica O, Uribe CS, Lopera F, Velez-Pardo C (2004) Autosomal recessive juvenile parkinsonism Cys212Tyr mutation in parkin renders lymphocytes susceptible to dopamine- and iron-mediated apoptosis. Mov Disord 19(3):324–330

    Article  PubMed  Google Scholar 

  • Jimenez-Del-Rio M, Guzman-Martinez C, Velez-Pardo C (2010) The effects of polyphenols on survival and locomotor activity in Drosophila melanogaster exposed to iron and paraquat. Neurochem Res 35(2):227–238

    Article  CAS  PubMed  Google Scholar 

  • Kim RH, Smith PD, Aleyasin H, Hayley S, Mount MP, Pownall S, Wakeham A, You-Ten AJ, Kalia SK, Horne P, Westaway D, Lozano AM, Anisman H, Park DS, Mak TW (2005) Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A 102(14):5215–5220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinumi T, Kimata J, Taira T, Ariga H, Niki E (2004) Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells. Biochem Biophys Res Commun 317(3):722–728

    Article  CAS  PubMed  Google Scholar 

  • Kitada T, Tong Y, Gautier CA, Shen J (2009) Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem 111(3):696–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kładna A, Michalska T, Berczyński P, Kruk I, Aboul-Enein HY (2012) Evaluation of the antioxidant activity of tetracycline antibiotics in vitro. Luminescence 27(4):249–255

    Article  CAS  PubMed  Google Scholar 

  • Koros C, Simitsi A, Stefanis L (2017) Genetics of Parkinson’s disease: genotype-phenotype correlations. Int Rev Neurobiol 132:197–231

    Article  PubMed  Google Scholar 

  • Kraus RL, Pasieczny R, Lariosa-Willingham K, Turner MS, Jiang A, Trauger JW (2005) Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J Neurochem 94(3):819–827

    Article  CAS  PubMed  Google Scholar 

  • Kwon HJ, Heo JY, Shim JH, Park JH, Seo KS, Ryu MJ, Han JS, Shong M, Son JH, Kweon GR (2011) DJ-1 mediates paraquat-induced dopaminergic neuronal cell death. Toxicol Lett 202(2):85–92

    Article  CAS  PubMed  Google Scholar 

  • Langston JW (2017) The MPTP story. J Parkinson’s Dis 7(s1):S11–S22

    Article  Google Scholar 

  • Lavara-Culebras E, Paricio N (2007) Drosophila DJ-1 mutants are sensitive to oxidative stress and show reduced lifespan and motor deficits. Gene 400(1–2):158–165

    Article  CAS  PubMed  Google Scholar 

  • Lavara-Culebras E, Muñoz-Soriano V, Gómez-Pastor R, Matallana E, Paricio N (2010) Effects of pharmacological agents on the lifespan phenotype of Drosophila DJ-1beta mutants. Gene 462(1–2):26–33

    Article  CAS  PubMed  Google Scholar 

  • Lee LS, Kim SH, Kim YB, Kim YC (2014) Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity. Molecules 19(7):9173–9186

    Article  CAS  PubMed  Google Scholar 

  • León-González AJ, Auger C, Schini-Kerth VB (2015) Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol 98(3):371–380

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Prahlad J, Wilson MA (2012) Conservation of oxidative protein stabilization in an insect homologue of parkinsonism-associated protein DJ-1. Biochemistry 51(18):3799–3807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas JI, Marín I (2007) A new evolutionary paradigm for the Parkinson disease gene DJ-1. Mol Biol Evol 24(2):551–561

    Article  CAS  PubMed  Google Scholar 

  • Macedo MG, Verbaan D, Fang Y, van Rooden SM, Visser M, Anar B, Uras A, Groen JL, Rizzu P, van Hilten JJ, Heutink P (2009) Genotypic and phenotypic characteristics of Dutch patients with early onset Parkinson’s disease. Mov Disord 24:196–203

    Article  PubMed  Google Scholar 

  • Mahlknecht P, Seppi K, Poewe W (2015) The concept of prodromal Parkinson’s disease. J Parkinsons Dis 5(4):681–697

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathew S, Abraham TE, Zakaria ZA (2015) Reactivity of phenolic compounds towards free radicals under in vitro conditions. J Food Sci Technol 52(9):5790–5798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meulener M, Whitworth AJ, Armstrong-Gold CE, Rizzu P, Heutink P, Wes PD, Pallanck LJ, Bonini NM (2005) Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Curr Biol 15(17):1572–1577

    Article  CAS  PubMed  Google Scholar 

  • Meulener MC, Xu K, Thomson L, Ischiropoulos H, Bonini NM (2006) Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc Natl Acad Sci U S A 103(33):12517–12522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr SE (2014) RNAi screening in Drosophila cells and in vivo. Methods 68(1):82–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora M, Medina-Leendertz SJ, Bonilla E, Terán RE, Paz MC, Arcaya JL (2013) Minocycline, but not ascorbic acid, increases motor activity and extends the life span of Drosophila melanogaster. Investig Clin 54(2):161–170

    Google Scholar 

  • Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y (1996) Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med 21(6):895–902

    Article  CAS  PubMed  Google Scholar 

  • Navarro JA, Heßner S, Yenisetti SC, Bayersdorfer F, Zhang L, Voigt A, Schneuwly S, Botella JA (2014) Analysis of dopaminergic neuronal dysfunction in genetic and toxin-induced models of Parkinson’s disease in Drosophila. J Neurochem 131(3):369–382

    Article  CAS  PubMed  Google Scholar 

  • Nelson ML, Levy SB (2011) The history of the tetracyclines. Ann N Y Acad Sci 1241:17–32

    Article  CAS  PubMed  Google Scholar 

  • Niveditha S, Ramesh SR, Shivanandappa T (2017) Paraquat-induced movement disorder in relation to oxidative stress-mediated neurodegeneration in the brain of Drosophila melanogaster. Neurochem Res 42:3310–3320. https://doi.org/10.1007/s11064-017-2373-y

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Arellano HF, Jimenez-Del-Rio M, Velez-Pardo C (2011) Life span and locomotor activity modification by glucose and polyphenols in Drosophila melanogaster chronically exposed to oxidative stress-stimuli: implications in Parkinson’s disease. Neurochem Res 36(6):1073–1086

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Arellano HF, Jimenez-Del-Rio M, Velez-Pardo C (2017) Minocycline protects, rescues and prevents knockdown transgenic parkin Drosophila against paraquat/iron toxicity: implications for autosomic recessive juvenile parkinsonism. Neurotoxicology 60:42–53

    Article  CAS  PubMed  Google Scholar 

  • Oxenkrug G, Navrotskaya V, Vorobyova L, Summergrad P (2012) Minocycline effect on life and health span of Drosophila melanogaster. Aging Dis 3(5):352–359

    PubMed  PubMed Central  Google Scholar 

  • Park J, Kim SY, Cha GH, Lee SB, Kim S, Chung J (2005) Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 361:133–139

    Article  CAS  PubMed  Google Scholar 

  • Pineda-Trujillo N, Carvajal-Carmona LG, Buriticá O, Moreno S, Uribe C, Pineda D, Toro M, García F, Arias W, Bedoya G, Lopera F, Ruiz-Linares A (2001) A novel Cys212Tyr founder mutation in parkin and allelic heterogeneity of juvenile parkinsonism in a population from North West Colombia. Neurosci Lett 298(2):87–90

    Article  CAS  PubMed  Google Scholar 

  • Quintero-Espinosa D, Jimenez-Del-Rio M, Velez-Pardo C (2017) Knockdown transgenic Lrrk Drosophila resists paraquat-induced locomotor impairment and neurodegeneration: a therapeutic strategy for Parkinson’s disease. Brain Res 1657:253–261

    Article  CAS  PubMed  Google Scholar 

  • Robb EL, Gawel JM, Aksentijević D, Cochemé HM, Stewart TS, Shchepinova MM, Qiang H, Prime TA, Bright TP, James AM, Shattock MJ, Senn HM, Hartley RC, Murphy MP (2015) Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat. Free Radic Biol Med 89:883–894

    Article  CAS  PubMed  Google Scholar 

  • Sanz FJ, Solana-Manrique C, Muñoz-Soriano V, Calap-Quintana P, Moltó MD, Paricio N (2017) Identification of potential therapeutic compounds for Parkinson’s disease using Drosophila and human cell models. Free Radic Biol Med 108:683–691

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Raymick J, Imam S (2016) Neuroprotective and therapeutic strategies against Parkinson’s disease: recent perspectives. Int J Mol Sci 17(6):904

    Article  CAS  PubMed Central  Google Scholar 

  • Severino JF, Goodman BA, Kay CW, Stolze K, Tunega D, Reichenauer TG, Pirker KF (2009) Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations. Free Radic Biol Med 46(8):1076–1088

    Article  CAS  PubMed  Google Scholar 

  • Singh NA, Mandal AK, Khan ZA (2016) Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 15(1):60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solanki I, Parihar P, Mansuri ML, Parihar MS (2015) Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 6(1):64–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun SY, An CN, Pu XP (2012) DJ-1 protein protects dopaminergic neurons against 6-OHDA/MG-132-induced neurotoxicity in rats. Brain Res Bull 88(6):609–616

    Article  CAS  PubMed  Google Scholar 

  • Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139(Suppl 1):318–324

    Article  CAS  PubMed  Google Scholar 

  • Taira T, Saito Y, Niki T, Iguchi-Ariga SMM, Takahashi K, Ariga H (2004) DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 5(2):213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten M, Chade AR, Comyns K, Richards MB, Meng C, Priestley B, Fernandez HH, Cambi F, Umbach DM, Blair A, Sandler DP, Langston JW (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119(6):866–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Petrie TG, Liu Y, Liu J, Fujioka H, Zhu X (2012) Parkinson’s disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. J Neurochem 121(5):830–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Shen J (2007) Absence of dopaminergic neuronal degeneration and oxidative damage in aged DJ-1-deficient mice. Mol Neurodegener 2:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida Y, Umeno A, Akazawa Y, Shichiri M, Murotomi K, Horie M (2015) Chemistry of lipid peroxidation products and their use as biomarkers in early detection of diseases. J Oleo Sci 64(4):347–356

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marlene Jimenez-Del-Rio or Carlos Velez-Pardo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Perez, D.A., Jimenez-Del-Rio, M. & Velez-Pardo, C. Epigallocatechin-3-Gallate Protects and Prevents Paraquat-Induced Oxidative Stress and Neurodegeneration in Knockdown dj-1-β Drosophila melanogaster. Neurotox Res 34, 401–416 (2018). https://doi.org/10.1007/s12640-018-9899-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-018-9899-x

Keywords

Navigation