Skip to main content

Advertisement

Log in

Morphine Withdrawal Increases Brain-Derived Neurotrophic Factor Precursor

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Morphine has been shown to increase the expression of brain-derived neurotrophic factor (BDNF) in the brain. However, little is known about the effect of morphine withdrawal on BDNF and its precursor protein, or proBDNF, which induces neuronal apoptosis. In this work, we examined whether BDNF and proBDNF levels change in rats chronically injected with escalating doses of morphine and those who undergo spontaneous withdrawal for 60 h. We observed, in the frontal cortex and striatum, that the ratio of BDNF to proBDNF changed depending upon the experimental paradigm. Morphine treatment and morphine withdrawal increased both BDNF and proBDNF levels. However, the increase in proBDNF immunoreactivity in withdrawal rats was more robust than that observed in morphine-treated rats. proBDNF is processed either intracellularly by furin or extracellularly by the tissue plasminogen activator (tPA)/plasminogen system or matrix metalloproteases (MMPs). To examine the mechanisms whereby chronic morphine treatment and morphine withdrawal differentially affects BDNF/proBDNF, the levels MMP-3 and MMP-7, furin, and tPA were analyzed. We found that morphine increases tPA levels, whereas withdrawal causes a decrease. To confirm the involvement of tPA in the morphine-mediated effect on BDNF/proBDNF, we exposed cortical neurons to morphine in the presence of the tPA inhibitor plasminogen activator inhibitor-1 (PAI-1). This inhibitor reversed the morphine-mediated decrease in proBDNF, supporting the hypothesis that morphine increases the availability of BDNF by promoting the extracellular processing of proBDNF by tPA. Because proBDNF could negatively influence synaptic repair, preventing withdrawal is crucial for reducing neurotoxic mechanisms associated with opioid abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akbarian S, Rios M, Liu RJ, Gold SJ, Fong HF, Zeiler S, Coppola V, Tessarollo L, Jones KR, Nestler EJ, Aghajanian GK, Jaenisch R (2002) Brain-derived neurotrophic factor is essential for opiate-induced plasticity of noradrenergic neurons. J Neurosci 22:4153-4162 doi:20026381

  • Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, Lindsay RM, Wiegand SJ (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389:856–860

    Article  CAS  PubMed  Google Scholar 

  • Anastasia A, Deinhardt K, Chao MV, Will NE, Irmady K, Lee FS, Hempstead BL, Bracken C (2013) Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat Commun 4:2490. doi:10.1038/ncomms3490

    Article  PubMed  PubMed Central  Google Scholar 

  • Avdoshina V, Biggio F, Palchik G, Campbell LA, Mocchetti I (2010) Morphine induces the release of CCL5 from astrocytes: potential neuroprotective mechanism against the HIV protein gp120. Glia 58:1630–1639. doi:10.1002/glia.21035

    PubMed  PubMed Central  Google Scholar 

  • Bachis A, Avdoshina V, Zecca L, Parsadanian M, Mocchetti I (2012) Human immunodeficiency virus type 1 alters brain-derived neurotrophic factor processing in neurons. J Neurosci 32:9477–9484. doi:10.1523/JNEUROSCI.0865-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandaru VV, Patel N, Ewaleifoh O, Haughey NJ (2011) A failure to normalize biochemical and metabolic insults during morphine withdrawal disrupts synaptic repair in mice transgenic for HIV-gp120. J NeuroImmune Pharmacol 6:640–649. doi:10.1007/s11481-011-9289-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Beattie MS, Harrington AW, Lee R, Kim JY, Boyce SL, Longo FM, Bresnahan JC, Hempstead BL, Yoon SO (2002) ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron 36:375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berta T, Liu YC, Xu ZZ, Ji RR (2013) Tissue plasminogen activator contributes to morphine tolerance and induces mechanical allodynia via astrocytic IL-1beta and ERK signaling in the spinal cord of mice. Neuroscience 247:376–385. doi:10.1016/j.neuroscience.2013.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolanos CA, Nestler EJ (2004) Neurotrophic mechanisms in drug addiction. NeuroMolecular Med 5:69–83. doi:10.1385/NMM:5:1:069

    Article  CAS  PubMed  Google Scholar 

  • Bruno MA, Cuello AC (2006) Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci U S A 103:6735–6740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabresi P, Napolitano M, Centonze D, Marfia GA, Gubellini P, Teule MA, Berretta N, Bernardi G, Frati L, Tolu M, Gulino A (2000) Tissue plasminogen activator controls multiple forms of synaptic plasticity and memory. Eur J Neurosci 12:1002–1012

    Article  CAS  PubMed  Google Scholar 

  • Cale JM, Lawrence DA (2007) Structure-function relationships of plasminogen activator inhibitor-1 and its potential as a therapeutic agent. Curr Drug Targets 8:971–981

    Article  CAS  PubMed  Google Scholar 

  • Campbell LA, Avdoshina V, Day C, Lim ST, Mocchetti I (2015) Pharmacological induction of CCL5 in vivo prevents gp120-mediated neuronal injury. Neuropharmacology 92:98–107. doi:10.1016/j.neuropharm.2015.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell LA, Avdoshina V, Rozzi S, Mocchetti I (2013) CCL5 and cytokine expression in the rat brain: differential modulation by chronic morphine and morphine withdrawal. Brain Behav Immun 34:130–140. doi:10.1016/j.bbi.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  • Centonze D, Napolitano M, Saulle E, Gubellini P, Picconi B, Martorana A, Pisani A, Gulino A, Bernardi G, Calabresi P (2002) Tissue plasminogen activator is required for corticostriatal long-term potentiation. Eur J Neurosci 16:713–721

    Article  PubMed  Google Scholar 

  • Chen ZY, Ieraci A, Teng H, Dall H, Meng CX, Herrera DG, Nykjaer A, Hempstead BL, Lee FS (2005) Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J Neurosci 25:6156–6166 doi:10.1523/JNEUROSCI.1017-05.2005

  • Ciammola A, Sassone J, Cannella M, Calza S, Poletti B, Frati L, Squitieri F, Silani V (2007) Low brain-derived neurotrophic factor (BDNF) levels in serum of Huntington's disease patients. Am J Med Genet B Neuropsychiatr Genet 144:574–577

    Article  Google Scholar 

  • Desjardins S, Belkai E, Crete D, Cordonnier L, Scherrmann JM, Noble F, Marie-Claire C (2008) Effects of chronic morphine and morphine withdrawal on gene expression in rat peripheral blood mononuclear cells. Neuropharmacology 55:1347–1354. doi:10.1016/j.neuropharm.2008.08.027

    Article  CAS  PubMed  Google Scholar 

  • Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu MS, Deogracias R, Gundelfinger ED, Kojima M, Nestel S, Frotscher M, Barde YA (2012) BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol 196:775–788. doi:10.1083/jcb.201201038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    Article  CAS  PubMed  Google Scholar 

  • Eisenstein TK, Rahim RT, Feng P, Thingalaya NK, Meissler JJ (2006) Effects of opioid tolerance and withdrawal on the immune system. J NeuroImmune Pharmacol 1:237–249. doi:10.1007/s11481-006-9019-1

    Article  PubMed  Google Scholar 

  • Flavin MP, Zhao G, Ho LT (2000) Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia 29:347–354

    Article  CAS  PubMed  Google Scholar 

  • Greenwald MK, Steinmiller CL, Sliwerska E, Lundahl L, Burmeister M (2013) BDNF Val(66)Met genotype is associated with drug-seeking phenotypes in heroin-dependent individuals: a pilot study. Addict Biol 18:836–845. doi:10.1111/j.1369-1600.2011.00431.x

    Article  CAS  PubMed  Google Scholar 

  • Han BH, Holtzman DM (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 20:5775–5781

    CAS  PubMed  Google Scholar 

  • Harrington AW, Leiner B, Blechschmitt C, Arevalo JC, Lee R, Morl K, Meyer M, Hempstead BL, Yoon SO, Giehl KM (2004) Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc Natl Acad Sci U S A 101:6226–6230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatami H, Oryan S, Semnanian S, Kazemi B, Bandepour M, Ahmadiani A (2007) Alterations of BDNF and NT-3 genes expression in the nucleus paragigantocellularis during morphine dependency and withdrawal. Neuropeptides 41:321–328. doi:10.1016/j.npep.2007.04.007

    Article  CAS  PubMed  Google Scholar 

  • Head BP, Patel HH, Niesman IR, Drummond JC, Roth DM, Patel PM (2009) Inhibition of p75 neurotrophin receptor attenuates isoflurane-mediated neuronal apoptosis in the neonatal central nervous system. Anesthesiology 110:813–825. doi:10.1097/ALN.0b013e31819b602b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heberlein A, Dursteler-MacFarland KM, Lenz B, Frieling H, Grosch M, Bonsch D, Kornhuber J, Wiesbeck GA, Bleich S, Hillemacher T (2011) Serum levels of BDNF are associated with craving in opiate-dependent patients. J Psychopharmacol 25:1480–1484. doi:10.1177/0269881111411332

    Article  CAS  PubMed  Google Scholar 

  • Howells DW, Porritt MJ, Wong JYF, Batchelor PE, Kalnins R, Hughes AJ, Donnan GA (2000) Reduced BDNF mRNA expression in the Parkinson's disease substantia nigra. Exp Neurol 166:127–135

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR (2011) Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 63:772–810. doi:10.1124/pr.110.004135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232

    Article  CAS  PubMed  Google Scholar 

  • Jacovina AT, Zhong F, Khazanova E, Lev E, Deora AB, Hajjar KA (2001) Neuritogenesis and the nerve growth factor-induced differentiation of PC-12 cells requires annexin II-mediated plasmin generation. J Biol Chem 276:49350–49358. doi:10.1074/jbc.M106289200

    Article  CAS  PubMed  Google Scholar 

  • Je HS, Yang F, Ji Y, Potluri S, Fu XQ, Luo ZG, Nagappan G, Chan JP, Hempstead B, Son YJ, Lu B (2013) ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions. J Neurosci 33:9957–9962. doi:10.1523/JNEUROSCI.0163-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo JW, Mazei-Robison MS, Chaudhury D, Juarez B, LaPlant Q, Ferguson D, Feng J, Sun H, Scobie KN, Damez-Werno D, Crumiller M, Ohnishi YN, Ohnishi YH, Mouzon E, Dietz DM, Lobo MK, Neve RL, Russo SJ, Han MH, Nestler EJ (2012) BDNF is a negative modulator of morphine action. Science 338:124–128. doi:10.1126/science.1222265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebrun-Julien F, Bertrand MJ, De Backer O, Stellwagen D, Morales CR, Di Polo A, Barker PA (2010) ProNGF induces TNFalpha-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway. Proc Natl Acad Sci U S A 107:3817–3822. doi:10.1073/pnas.0909276107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948. doi:10.1126/science.1065057

    Article  CAS  PubMed  Google Scholar 

  • Lim ST, Esfahani K, Avdoshina V, Mocchetti I (2011) Exogenous gangliosides increase the release of brain-derived neurotrophic factor. Neuropharmacology 60:1160–1167. doi:10.1016/j.neuropharm.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Zhong XL, Zhou FH, Li JY, Zhou P, Xu JM, Song B, Li CQ, Zhou XF, Dai RP (2016) Peripheral brain derived neurotrophic factor precursor regulates pain as an inflammatory mediator. Sci Rep 6:27171. doi:10.1038/srep27171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamounas LA, Blue ME, Siuciak JA, Altar CA (1995) Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J Neurosci 15:7929–7939

    CAS  PubMed  Google Scholar 

  • Mashayekhi FJ, Rasti M, Rahvar M, Mokarram P, Namavar MR, Owji AA (2012) Expression levels of the BDNF gene and histone modifications around its promoters in the ventral tegmental area and locus ceruleus of rats during forced abstinence from morphine. Neurochem Res 37:1517–1523. doi:10.1007/s11064-012-0746-9

    Article  PubMed  Google Scholar 

  • Matys T, Pawlak R, Matys E, Pavlides C, McEwen BS, Strickland S (2004) Tissue plasminogen activator promotes the effects of corticotropin-releasing factor on the amygdala and anxiety-like behavior. Proc Natl Acad Sci U S A 101:16345–16350. doi:10.1073/pnas.0407355101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mowla SJ, Farhadi HF, Pareek S, Atwal JK, Morris SJ, Seidah NG, Murphy RA (2001) Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem 276:12660–12666. doi:10.1074/jbc.M008104200

    Article  CAS  PubMed  Google Scholar 

  • Nagai T, Yamada K, Yoshimura M, Ishikawa K, Miyamoto Y, Hashimoto K, Noda Y, Nitta A, Nabeshima T (2004) The tissue plasminogen activator-plasmin system participates in the rewarding effect of morphine by regulating dopamine release. Proc Natl Acad Sci U S A 101:3650–3655. doi:10.1073/pnas.0306587101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagappan G, Zaitsev E, Senatorov VV Jr, Yang J, Hempstead BL, Lu B (2009) Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc Natl Acad Sci U S A 106:1267–1272. doi:10.1073/pnas.0807322106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numan S, Lane-Ladd SB, Zhang L, Lundgren KH, Russell DS, Seroogy KB, Nestler EJ (1998) Differential regulation of neurotrophin and trk receptor mRNAs in catecholaminergic nuclei during chronic opiate treatment and withdrawal. J Neurosci 18:10700–10708

    CAS  PubMed  Google Scholar 

  • Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen C, Kliemannel M, Schwarz E, Willnow TE, Hempstead BL, Petersen CM (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427:843

    Article  CAS  PubMed  Google Scholar 

  • Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung WH, Hempstead BL, Lu B (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306:487–491 doi:10.1126/science.1100135

  • Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23. doi:10.1038/nrn3379

    Article  CAS  PubMed  Google Scholar 

  • Pawlak R, Magarinos AM, Melchor J, McEwen B, Strickland S (2003) Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nat Neurosci 6:168–174. doi:10.1038/nn998

    Article  CAS  PubMed  Google Scholar 

  • Plow EF, Herren T, Redlitz A, Miles LA, Hoover-Plow JL (1995) The cell biology of the plasminogen system. FASEB J 9:939–945

    CAS  PubMed  Google Scholar 

  • Robinson TE, Gorny G, Savage VR, Kolb B (2002) Widespread but regionally specific effects of experimenter- versus self-administered morphine on dendritic spines in the nucleus accumbens, hippocampus, and neocortex of adult rats. Synapse 46:271–279. doi:10.1002/syn.10146

    Article  CAS  PubMed  Google Scholar 

  • Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ (2009) Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 56(Suppl 1):73–82. doi:10.1016/j.neuropharm.2008.06.059

    Article  CAS  PubMed  Google Scholar 

  • Schluger JH, Bart G, Green M, Ho A, Kreek MJ (2003) Corticotropin-releasing factor testing reveals a dose-dependent difference in methadone maintained vs control subjects. Neuropsychopharmacology 28:985–994. doi:10.1038/sj.npp.1300156

    CAS  PubMed  Google Scholar 

  • Seeds NW, Basham ME, Haffke SP (1999) Neuronal migration is retarded in mice lacking the tissue plasminogen activator gene. Proc Natl Acad Sci U S A 96:14118–14123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiga S, Serra GP, Puddu MC, Foddai M, Diana M (2003) Morphine withdrawal-induced abnormalities in the VTA: confocal laser scanning microscopy. Eur J Neurosci 17:605–612

    Article  PubMed  Google Scholar 

  • Sun Y, Lim Y, Li F, Liu S, Lu JJ, Haberberger R, Zhong JH, Zhou XF (2012) ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS One 7:e35883. doi:10.1371/journal.pone.0035883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, Kraemer RT, Nykjaer A, Hempstead BL (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463. doi:10.1523/JNEUROSCI.5123-04.2005

    Article  CAS  PubMed  Google Scholar 

  • Toda T, Momose Y, Murata M, Tamiya G, Yamamoto M, Hattori N, Inoko H (2003) Toward identification of susceptibility genes for sporadic Parkinson's disease. J Neurol 250(Suppl 3):III40–III43

    PubMed  Google Scholar 

  • Valentino RJ, Van Bockstaele E (2015) Endogenous opioids: the downside of opposing stress. Neurobiol Stress 1:23–32. doi:10.1016/j.ynstr.2014.09.006

    Article  PubMed  Google Scholar 

  • Vargas-Perez H, Ting AKR, Walton CH, Hansen DM, Razavi R, Clarke L, Bufalino MR, Allison DW, Steffensen SC, van der Kooy D (2009) Ventral tegmental area BDNF induces an opiate-dependent-like reward state in naive rats. Science 324:1732–1734. doi:10.1126/science.1168501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weed MR, Steward DJ (2005) Neuropsychopathology in the SIV/macaque model of AIDS. Front Biosci 10:710–727

    Article  CAS  PubMed  Google Scholar 

  • Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75(NTR) by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077. doi:10.1038/Nn1510

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Nagai T, Nabeshima T (2005) Drug dependence, synaptic plasticity, and tissue plasminogen activator. J Pharmacol Sci 97:157–161

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Je HS, Ji Y, Nagappan G, Hempstead B, Lu B (2009) Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses. J Cell Biol 185:727–741. doi:10.1083/jcb.200811147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Lim Y, Li X, Zhong JH, Zhou XF (2011) Precursor of brain-derived neurotrophic factor (proBDNF) forms a complex with huntingtin-associated protein-1 (HAP1) and sortilin that modulates proBDNF trafficking, degradation, and processing. J Biol Chem 286:16272–16284. doi:10.1074/jbc.M110.195347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Ishikawa M, Niitsu T, Nakazato M, Watanabe H, Shiraishi T, Shiina A, Hashimoto T, Kanahara N, Hasegawa T, Enohara M, Kimura A, Iyo M, Hashimoto K (2012) Decreased serum levels of mature brain-derived neurotrophic factor (BDNF), but not its precursor proBDNF, in patients with major depressive disorder. PLoS One 7:e42676. doi:10.1371/journal.pone.0042676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5:311–322

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by HHS grants 1R01 NS079172 and 1R21 NS102121 to I.M., 1F31DA032282 to L.A.C., T32 NS041218 to E.W., and Georgetown University Music for the Mind award to A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Italo Mocchetti.

Electronic Supplementary Material

Supplementary Fig. A

Representative proBDNF standard curve obtained using the ELISA kit, as described in Materials and Methods. B. Cross reactivity of different concentrations (ng/ml) of BDNF as detected by the proBDNF ELISA. (PSD 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachis, A., Campbell, L.A., Jenkins, K. et al. Morphine Withdrawal Increases Brain-Derived Neurotrophic Factor Precursor. Neurotox Res 32, 509–517 (2017). https://doi.org/10.1007/s12640-017-9788-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9788-8

Keywords

Navigation